S. Nembenna, S. Singh, S. S. Sen, H. W. Roesky, H. Ott, D. Stalke
ARTICLE
Preparation of Compound 2: LAl(Me)OH (0.47 g, 1.0 mmol) dis-
solved in toluene (20 mL) was added drop by drop at room tempera-
ture to a stirred solution of LMgN(SiMe3)2 (0.60 g, 1.0 mmol) or
LMgMe·OEt2 (0.530 g, 1.0 mmol) in toluene (20 mL). The solution
was set to reflux for 14 h. After removal of all the volatiles in vacuo
compound 2 remained as a solid. Yield (0.82 g, 89 %). Mp: 259–
262 °C. C59H85AlMgN4O (916): C 77.29, H 9.28, N 6.11; found: C
76.77, H 9.13, N 6.06 %. 1H NMR (200 MHz, C6D6, 25 °C, SiMe4): –
1.42 (s, 3 H, Al–CH3), 1.08 (d, 12 H, CH(CH3)2, 1.22 (d, 24 H,
CH(CH3)2, 1.31 (d, 12 H, CH(CH3)2, 1.52 (s, 6 H, CH3), 1.64 (s, 6 H,
CH3), 3.25 (sept, 6 H, CH(CH3)2), 3.75 (sept, 2 H, CH(CH3)2), 4.82
(s, 1 H, γ-CH), 4.92 (s, 1 H, γ-CH), 7.08–7.16 (m, 12 H, m-, p–Ar–
H) ppm; 13C{1H} NMR (125.75 MHz, C6D6, 25 °C, SiMe4): –3.3,
25.4, 25.5, 26.1, 26.2, 35.5, 43.2, 97.3, 141.3, 147.5. EI-MS (70 eV):
Acknowledgement
This work was supported by the Deutsche Forschungsgemeinschaft
(DFG).
References
[1] L. Bourget-Merle, M. F. Lappert, J. R. Severn, Chem. Rev. 2002,
102, 3031–3065.
[2] S. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754–1757.
[3] M. Fujiwara, H. Wessel, P. Hyung-Suh, H. W. Roesky, Tetrahe-
dron 2002, 58, 239–243.
[4] a) N. Winkhofer, A. Voigt, H. Dorn, H. W. Roesky, A. Steiner,
D. Stalke, A. Reller, Angew. Chem. 1994, 106, 1414–1416;
Angew. Chem. Int. Ed. Engl. 1994, 33, 1352–1354; b) R. Muru-
gavel, V. Chandrasekhar, A. Voigt, H. W. Roesky, H.-G. Schmidt,
M. Noltemeyer, Organometallics 1995, 14, 5298–5301; c) S.
Singh, H. W. Roesky, Dalton Trans. 2007, 3060–3070.
[5] G. Bai, Y. Peng, H. W. Roesky, J. Li, H.-G. Schmidt, M. Noltemeyer,
Angew. Chem. 2003, 115, 1164–1167; Angew. Chem. Int. Ed. 2003,
42, 1132–1135.
m/z (%): 901 (100) [M+ – Me], 916 (6) [M+]. IR (Nujol) ν = 1860,
˜
1795, 1733, 1619, 1530, 1440, 1318, 1261, 1176, 1100, 1021, 955,
798, 760, 722, 623 cm–1.
Preparation of Compound 3: To a solution of L'H (1.04 g, 3.3 mmol)
in diethyl ether (15 mL) was slowly added drop by drop a solution of
MeMgCl (3 m in THF, 1.04 mL, 3.3 mmol) in diethyl ether (20 mL)
at –78 °C. The stirring was continued for 1 h at this temperature. When
the solution was allowed to warm to room temperature, an evolution
of methane gas was observed, and stirring was continued at ambient
temperature for 12 h. The volatiles were removed in vacuo and the
residue was washed with n-pentane (15 mL). The solid was dissolved
in toluene (20 mL) and overnight storage of this solution at –32 °C
resulted in colorless crystals of 3. Yield: 1.20 g (63.5 %). Mp: 158–
162 °C. C20.5H39ClMgN4 (401.32): C 61.35, H 9.79, N 13.96; found:
C 60.89, H 9.56, N 13.75 %. 1H NMR (200 MHz, C6D6, 25 °C,
SiMe4): 0.8 (t, 12 H, CH2CH3), 1.81 (s, 6 H, CH3), 2.61 (t, 4 H,
CH2CH2N),), 2.62–2.68 (q, 8 H, CH3CH2N), 3.01 (t, 4 H, CH2CH2N),
4.74 (s, 1 H, γ-CH) ppm; 13C{1H} NMR (125.75 MHz, C6D6, 25 °C,
SiMe4): 15.4, 17.1, 22.2, 23.1, 40.3, 47.8, 93.2, 140.2, 145.6 ppm. EI-
MS (70 eV): m/z (%): 354 (5) [M]+, 319 (15) [M – Cl]+, 86 (100)
[C5H12N]+
[6] V. Jancik, L. W. Pineda, A. C. Stückl, H. W. Roesky, R. Herbst-
Irmer, Organometallics 2005, 24, 1511–1515.
[7] a) G. Bai, S. Singh, H. W. Roesky, M. Noltemeyer, H.-G.
Schmidt, J. Am. Chem. Soc. 2005, 127, 3449–4355; b) S. Singh,
V. Jancik, H. W. Roesky, R. Herbst-Irmer, Inorg. Chem. 2006, 45,
949–951.
[8] L. W. Pineda, V. Jancik, H. W. Roesky, D. Neculai, A. M. Necu-
lai, Angew. Chem. 2004, 116, 1443–1445; Angew. Chem. Int. Ed.
2004, 43, 1419–1421.
[9] a) C. Ruspic, S. Nembenna, A. Hofmeister, J. Magull, S. Harder,
H. W. Roesky, J. Am. Chem. Soc. 2006, 128, 15000–15004; b) S.
Sarish, S. Nembenna, S. Nagendran, H. W. Roesky, A. Pal, R.
Herbst-Irmer, A. Ringe, J. Magull, Inorg. Chem. 2008, 47, 5971–
5977.
[10] a) P. Ghosh, G. Parkin, Inorg. Chem. 1996, 35, 1429–1430;
b) L. F. Sánchez-Barba, D. L. Hughes, S. M. Humphrey, M.
Bochmann, Organometallics 2006, 25, 1012–1020.
[11] a) H. M. El-Kaderi, M. J. Heeg, C. H. Winter, Polyhedron 2006,
25, 224–234; b) W. Maudez, D. Häussinger, K. M. Fromm, Z.
Anorg. Allg. Chem. 2006, 632, 2295–2298.
[12] a) Y. Xie, H. F. Schafer III, E. D. Jemmis, Chem. Phys. Lett.
2005, 402, 414–421; b) M. Westerhausen, M. Gärtner, R. Fischer,
J. Langer, L. Yu, M. Reiher, Chem. Eur. J. 2007, 13, 6292–6306.
[13] S. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. Edwards,
G. J. McIntyre, Chem. Eur. J. 2010, 16, 938–955.
Crystal Structure Determination
Shock cooled crystals were selected and mounted under nitrogen at-
mosphere using the X-TEMP.[22] The data for 2·THF was collected at
100(2) K using a INCOATEC Mo Microsource[23] with Quazar mirror
optics and APEX II detector with a D8 goniometer. The data of 3·0.5
toluene was measured using a Bruker TXS-Mo rotating anode with
Helios mirror optics and APEX II detector with a D8 goniometer. Both
diffractometers were equipped with a low-temperature device and used
Mo-Kα radiation, λ = 0.71073 Å. The data of 2·THF and 3·0.5toluene
were integrated with SAINT[24] and an empirical absorption (SAD-
ABS) was applied.[25] The structures were solved by direct methods
(SHELXS-97) and refined by full-matrix least-squares methods against
F2 (SHELXL-97).[26] All non-hydrogen-atoms were refined with aniso-
[14] B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B.
Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 3229–
3238.
[15] S. Nembenna, H. W. Roesky, S. K. Mandal, R. B. Oswald, A.
Pal, R. Herbst-Irmer, M. Noltemeyer, H.-G. Schmidt, J. Am.
Chem. Soc. 2006, 128, 13056–13057.
[16] a) A. P. Dove, V. C. Gibson, P. Hormnirum, E. L. Marshall, J. A.
Segal, A. J. P. White, D. J. Williams, Dalton Trans. 2003, 3088–
3097; b) P. J. Bailey, C. M. E. Dick, S. Fabre, S. Parsons, J.
Chem. Soc., Dalton Trans. 2000, 1655–1661; c) P. J. Bailey, R. A.
Coxall, C. M. E. Dick, S. Fabre, S. Parsons, Organometallics
2001, 20, 798–801.
tropic displacement parameters. The hydrogen atoms were refined iso- [17] R.-C. Yu, C.-H. Hung, J.-H. Huang, H.-Y. Lee, J.-T. Chen, Inorg.
Chem. 2002, 41, 6450–6455.
tropically on calculated positions using a riding model with their Uiso
values constrained to equal to 1.5 times the Ueq of their pivot atoms
for terminal sp3 carbon atoms and 1.2 times for all other carbon atoms.
Disordered moieties were refined using bond lengths restraints and
isotropic displacement parameters restraints. CCDC-789418, -789419
contain the supplementary crystallographic data for compounds 2 and
3 of this paper. These data can be obtained free of charge from the
data_request/cif.
[18] N. Kuhn, S. Fuchs, E. Niquet, M. Richter, M. Steimann, Z. Anorg.
Allg. Chem. 2002, 628, 717–718.
[19] D. Neculai, H. W. Roesky, A. M. Neculai, J. Magull, H.-G.
Schmidt, M. Noltemeyer, J. Organomet. Chem. 2002, 643, /644,
47–52.
[20] J. Prust, K. Most, I. Müller, E. Alexopoulos, A. Stasch, I. Usón,
H. W. Roesky, Z. Anorg. Allg. Chem. 2001, 627, 2032–2037.
[21] J. M. Smith, R. J. Lachicotte, P. L. Holland, Chem. Commun.
2001, 1542–1543.
204
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2011, 201–205