Table 2 a-Amination of a-disubstituted aldehyde 3 with different pri-
mary amines
of aldehydes. This reaction generates a-hydrazino aldehydes
bearing a quaternary stereogenic center with high yields and
excellent stereoselectivities.
Further investigations into this reaction sequence, including its
synthetic applications, are presently underway.
Entry
1b
Primary amine catalyst
Ratio 5/6a
>19/1
Yield
88%
Acknowledgements
The authors thank the MENRT, CNRS and the Univer-
sity of Versailles-St-Quentin-en-Yvelines for a grant (A.D.)
and financial support. We also thank Prof. Prim for helpful
discussions.
2
3
1/1
86%
89%
3.4/1
References
1 (a) D. Enders, C. Grondal and M. R. M. Hu¨ttl, Angew. Chem., Int.
Ed., 2007, 46, 1570; (b) A. M. Walji and D. W. C. MacMillan, Synlett,
2007, 10, 1477; (c) X. Yu and W. Wang, Org. Biomol. Chem., 2008, 6,
2037; (d) B. Westermann, M. Ayaz and S. S. Van Bekel, Angew. Chem.,
Int. Ed., 2010, 49, 846; (e) C. Grondal, M. Jeanty and D. Enders, Nat.
Chem., 2010, 2, 167.
4
1/1.9
87%
2 For a general review, see (a) J. Zhou, Chem.–Asian J., 2010, 5, 422. For
organocascade catalysis, see; (b) Y. Chi, S. T. Scroggins and J. M. J.
Fre´chet, J. Am. Chem. Soc., 2008, 130, 6322; (c) S. P. Lathrop and T.
Trovis, J. Am. Chem. Soc., 2009, 131, 13628; (d) B. Simmons, A. M.
Walji and D. W. C. MacMillan, Angew. Chem., Int. Ed., 2009, 48, 4349;
(e) Y. Wang, R.-G. Han, Y.-L. Zhao, S. Yang, P.-F. Xu and D. J. Dixon,
Angew. Chem., Int. Ed., 2009, 48, 9834; (f) Y. Wang, D.-F. Yu, Y.-Z.
Liu, H. Wei, Y.-C. Luo, D J. Dixon and P.-F. Xu, Chem.–Eur. J., 2010,
16, 3922.
3 For a review, see S. Bertelsen and K. A. Jørgensen, Chem. Soc. Rev.,
2009, 38, 2178.
4 For seminal reports, see (a) M. Marigo, T. Schulte, J. Franzen and K. A.
Jørgensen, J. Am. Chem. Soc., 2005, 127, 15710; (b) Y. Huang, A. M.
Walji, C. H. Larsen and D. W. C. MacMillan, J. Am. Chem. Soc., 2005,
127, 15051; (c) J. W. Yang, M. T. Hechavarria, Fonseca and B. List,
J. Am. Chem. Soc., 2005, 127, 15036.
5 For a review on organocatalytic formation of quaternary stereocenters,
see M. Bella and T. Gasperi, Synthesis, 2009, 1583.
6 C. Chandler, P. Galzerano, A. Michrowska and B. List, Angew. Chem.,
Int. Ed., 2009, 48, 1978.
7 D. Enders, C. Wang and J. W. Bats, Angew. Chem., Int. Ed., 2008, 47,
7539.
8 For general reviews about organocatalyzed 1,4-additions, see (a) D.
Almasi, D. A. Alonso and C. Na´jera, Tetrahedron: Asymmetry, 2007,
18, 299; (b) S. Sulzer-Mosse´ and A. Alexakis, Chem. Commun.,
2007, 3123; (c) J. L. Vicario, D. Bad´ıa and L. Carillo, Synthe-
sis, 2007, 2065; (d) S. B. Tsogoeva, Eur. J. Org. Chem., 2007,
1701.
9 For general reviews, see (a) C. Greck, B. Drouillat and C. Thomassigny,
Eur. J. Org. Chem., 2004, 1377; (b) T. Vilaivan and W. Bhanthumnavin,
Molecules, 2010, 15, 917For selected examples, see: (c) R. Ait-Youcef,
D. Kalch, X. Moreau, C. Thomassigny and C. Greck, Lett. Org. Chem.,
2009, 6, 377; (d) R. Ait-Youcef, K. Sbargoud, X. Moreau and C.
Greck, Synlett, 2009, 18, 3007; (e) R. Ait-Youcef, X. Moreau and C.
Greck, J. Org. Chem., 2009, 75, 5312; (f) P.-M. Liu, C. Chang, R. J.
Reddy, Y.-F. Ting, H.-H. Kuan and K. Chen, Eur. J. Org. Chem., 2010,
42.
1
a Determined by H NMR on the crude product. b 5 mol% of catalyst 7
was used for the reaction.
Then, we envisioned synthesizing the diastereomer of com-
pound 5 by simply changing catalyst 2 for its pseudo enantiomer
catalyst 7 (Table 2, entry 1). Surprisingly, these conditions afforded
the same product 5 with similar results as described above (Table 1,
entry 1).
Finally, we screened different alkyl benzylamines as catalysts
for the C–N bond forming step. As expected, benzylamine led
to a 1/1 mixture of stereoisomer 5 and 6 (entry 2). When (R)-
a-methylbenzylamine was used to promote the reaction, the
diastereomeric ratio increased to 3.4/1 in favour of aldehyde 5
(entry 3). If the enantiomer (S)-a-methylbenzylamine was used as
the catalyst, we observed the formation of aldehyde 6 as the major
diastereomer (5/6: 1/1.9; entry 4). The diastereomeric mixture was
separated by flash chromatography on silica gel and compound 6
was isolated in 52% yield and 96% ee.
To improve the synthetic scope of this methodology, we
transformed the resulting aldehyde compound. As illustrated
in Scheme 4, the aldehyde moiety was oxidized under smooth
conditions (KH2PO4, NaClO2 and H2O2) and esterified to afford
the a-hydrazino ester in 50% yield.
10 For selected examples, see (a) M. P. Lalonde, Y. Chen and E. N.
Jacobsen, Angew. Chem., Int. Ed., 2006, 45, 6366; (b) S. H. McCooey
and S. J. Connon, Org. Lett., 2007, 9, 599.
11 (a) H. Vogt, S. Vanderheiden and S. Bra¨se, Chem. Commun., 2003,
2448; (b) T. Baumann, H. Vogt and S. Bra¨se, Eur. J. Org. Chem., 2007,
266; (c) T. Baumann, M. Ba¨chle, C. Hartmann and S. Bra¨se, Eur. J. Org.
Chem., 2008, 2207.
Scheme 4
Conclusion
12 In our hands, primary amine-catalyzed Michael addition gave only
poor results.
In summary, a new organocatalytic Michael–a-amination se-
quence has been developed based on a double enamine activation
13 Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, Angew. Chem., Int.
Ed., 2005, 44, 4212.
996 | Org. Biomol. Chem., 2011, 9, 994–997
This journal is
The Royal Society of Chemistry 2011
©