S. S. Bag et al. / Bioorg. Med. Chem. Lett. 23 (2013) 96–101
101
3. (a) Krishna, A. G.; Kumar, D. V.; Khan, B. M.; Rawal, S. K.; Ganesh, K. N. Biochim.
Biophy. Acta 1998, 104, 1381; (b) Egawa, Y.; Hayashida, R.; Seki, T.; Anzai, J.
Talanta 2008, 76, 736; (c) Lu, H.; Xu, B.; Dong, Y.; Chen, F.; Li, Y.; Li, Z.; He, J.; Li,
H.; Tian, W. Langmuir 2010, 26, 6838; (d) Xie, J.; Chen, Y.; Yang, W.; Xu, D.;
Zhang, K. J. Photochem. Photobiol. A: Chem. 2011, 223, 111; Mulla, K.; Dongare,
P.; Zhou, N.; Chen, G.; Thompson, D. W.; Zhao, Y. Org. Biomol. Chem. 2011, 9,
1332; (e) Gu, X.; Zhang, G.; Zhang, D. Analyst 2012, 137, 365.
4. (a) Bag, S. S.; Kundu, R. J. Org. Chem. 2011, 76, 3348; (b) Bag, S. S.; Kundu, R.;
Das, M. J. Org. Chem. 2011, 76, 2332; (c) Sanii, B.; Kudirka, R.; Cho, A.;
Venkateswaran, N.; Olivier, G. K.; Olson, A. M.; Tran, H.; Harada, R. M.; Tan, L.;
Zuckermann, R. N. J. Am. Chem. Soc. 2011, 133, 20808; (d) Loving, G.; Imperiali,
B. J. Am. Chem. Soc. 2008, 130, 13630; (e) Vázquez, M. E.; Blanco, J. B.; Imperiali,
B. J. Am. Chem. Soc. 2005, 127, 1300; (f) Loving, G.; Imperiali, B. Bioconjugate
Chem. 2009, 20, 2133; (g) Thielbeer, F.; Chankeshwara, S. V.; Bradley, M.
Biomacromolecules 2011, 12, 4386; (h) Manna, A.; Chakravorti, S. J. Phys. Chem. B
2012, 116, 5226; (i) Veale, E. B.; Frimannsson, D. O.; Lawler, M.; Gunnlaugsson,
T. Org. Lett. 2009, 11, 4040; (j) Veale, E. B.; Gunnlaugsson, T. J. Org. Chem. 2010,
75, 5513; (k) Roy, S.; Saha, S.; Majumdar, R.; Dighe, R. R.; Chakravarty, A. R.
Inorg. Chem. 2009, 48, 9501; (l) Ryan, G. J.; Quinn, S.; Gunnlaugsson, T. Inorg.
Chem. 2008, 47, 401.
5. (a) Ramachandram, B.; Saroja, G.; Sankaran, N. B.; Samanta, A. J. Phys. Chem. B
2000, 104, 11824; (b) Saha, S.; Samanta, A. J. Phys. Chem. A 2002, 106, 4763; (c)
Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc.
Rev. 2010, 39, 3936.
6. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467; (b)
Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874.
7. (a) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.;
MacKenzie, J. D. Science 2001, 293, 1119; (b) Becker, J. Y.; Bernstein, J.; Bittner,
S.; Levi, N.; Shaik, S. S. J. Am. Chem. Soc. 1983, 105, 4468; (c) Becker, J. Y.;
Bernstein, J.; Bittner, S.; Levi, N.; Shaik, S. S.; Zerzion, N. J. Org. Chem. 1988, 53,
1689; (d) Benanti, T. L.; Saejueng, P.; Venkataraman, D. Chem. Commun. 2007,
692.
To support minor groove binding event, we have carried out
MacroModel calculation by Maestro, version 9.0 with AMBER⁄
force field in ⁄water.1⁄8 For the opti⁄mizati⁄on we ⁄chose the DNA se-
quence [50-d( CP⁄GP CP⁄GP⁄AP⁄AP TP⁄TP CP⁄GP CP⁄G)-30, (PDB Id:
1DNH)] where Hoechst 33258 dye enter into the minor groove.
Thus, Amber⁄ optimized geometry of our probe 2 with the model
DNA sequence (Fig. 5b) showed and support our experimental
observation of groove binding event especially in the minor groove.
Therefore, it was clear from the above findings that the probe 2
was more efficient compared to probe 1 in sensing microenviron-
ment of ct-DNA via the generation of enhanced fluorescence signal.
The low fluorescence intensity of the probes in phosphate buffer in
absence of biomolecules is not due to the insolubility of the probe
but may be attributed to the radiationless channel assisted by
intermolecular hydrogen bonding present in aqueous solution.5a,b
However, as the probes bound to the groove side they experienced
restricted radiationless channel inside the groove of ct-DNA ulti-
mately leading to a fluorescence switch-on signal with high inten-
sity and quantum yield.
In conclusion, we developed new donor/acceptor conjugated
fluorescent naphthalimide based fluorophores. The fluorescence
of naphthalimide containing terminal alkynes were of highly ICT
character and very sensitive to solvent polarity. We showed that
the died down fluorescence of probe 1 in buffer could be recovered
in presence of ct-DNA. We also investigated that both the probes
are capable of sensing of microenvironment of ct-DNA via a gener-
ation of enhanced fluorescence signal. The solid state fluorescence
property of the probe 1 might find application in materials sci-
ences. The exploitation of the terminal acetylenes to the synthesis
of fluorescently labeled biomolecular building blocks such as la-
beled nucleosides and amino acids and their applications thereof
is our current research target.
8. (a) Wintgens, V.; Valat, P.; Kossanyi, J.; Demeter, A.; Biczok, L.; Berces, T. New J.
Chem. 1996, 20, 1149.
9. (a) Yan, F.; Liu, H. H.; Li, W. L.; Chu, B.; Su, Z. S.; Zhang, G.; Zhu, Y. R. C. J. Z.;
Yang, D. F.; Wang, J. B.; Zhang, G. Appl. Phys. Lett. 2009, 95, 253308; (b)
Takahashi, S.; Nozaki, K.; Kozaki, M., et al J. Phys. Chem. A 2008, 112, 15463; (c)
Cao, Z.; Nandhikonda, P.; Penuela, A.; Nance, S.; Heagy, M. D. Int. J. Photoenergy
2010, Article ID 264643.; (d) Segura, J. L.; Herrera, H.; Bäuerle, P. J. Mater. Chem.
2012, 22, 8717.
10. (a) Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213; (b) Berlman, I. B. Handbook
of Fluorescence Spectra of Aromatic Molecules; Academic Press: New York, 1971;
(c) Melhuish, W. H. J. Phys. Chem. 1961, 65, 229.
11. (a) Mataga, N.; Kaifu, Y.; Koizumi, M. Bull. Chem. Soc. Jpn. 1956, 29, 465; (b)
Dahiya, P.; Maity, D. K.; Nayak, S. K.; Mukherjee, T.; Pal, H. J. Photochem.
Photobiol. A: Chem. 2007, 186, 218; (c) Masuhara, H.; Mataga, N. Acc. Chem. Res.
1981, 14, 312; (d) Lippert, V. Z. Z. Naturforsch. 1957, 10a, 541; (e) Dahiya, P.;
Kumbhakar, M.; Maity, D. K.; Mukherjee, T.; Tripathi, A. B. R.; Chattopadhyay,
N.; Pal, H. J. Photochem. Photobiol. A: Chem. 2006, 181, 338.
Acknowledgments
We thank Department of Science and Technology [DST: SR/SI/
OC-69/2008], Govt. of India, for a financial support. M.K.P. and
S.J. thank UGC and CSIR respectively, Government of India and
R.K. thanks IIT Guwahati for their fellowships.
12. (a) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New
York, 2006; (b) Senthilkumar, S.; Nath, S.; Pal, H. Photochem. Photobiol. 2004,
80, 104; (c) Nad, S.; Pal, H. J. Phys. Chem. A 2003, 107, 501; (d) Barik, A.; Nath, S.;
Pal, H. J. Chem. Phys. 2003, 119, 10202; (e) Nath, S.; Pal, H.; Sapre, A. V. Chem.
Phys. Lett. 2002, 360, 422; (f) Nad, S.; Pal, H. J. Phys. Chem. A 2001, 105, 1097.
13. (a) Grabowksi, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899; (b)
Turro, N. J. Modern Molecular Photochemistry; University Science Books:
Sausalito, 1991; (c) Fromherz, P. J. Phys. Chem. 1995, 99, 7188; (d) Albinsson,
B. J. Am. Chem. Soc. 1997, 119, 6369; (e) Chen, X.; Zhao, Y.; Cao, Z. J. Chem. Phys.
2009, 130, 144307; (f) Thiagarajan, V.; Selvaraju, C.; Malar, E. J. P.;
Ramamurthy, P. ChemPhysChem 2004, 5, 1200; (g) Pham, T. H. N.; Clarke, R. J.
J. Phys. Chem. B 2008, 112, 6513; (h) Shim, T.; Lee, M. H.; Kim, D.; Ouchi, Y. J.
Phys. Chem. B. 1906, 2008, 112; (i) Panigrahi, M.; Dash, S.; Patel, S.; Behera, P. K.;
Mishra, B. K. Spectrochim. Acta, Part A 2007, 68, 757; (j) Benniston, A. C.;
Harriman, A.; Llarena, I.; Sams, C. A. Chem. Mater. 1931, 2007, 19; (k) Perez-
Inestrosa, E.; Montenegro, J.-M.; Collado, D.; Suau, R. Chem. Commun. 2008,
1085; (l) Shaikh, M.; Mohanty, J.; Singh, P. K.; Bhasikuttan, A. C.; Rajule, R. N.;
Satam, V. S.; Bendre, S. R.; Kanetkar, V. R.; Pal, H. J. Phys. Chem. A 2010, 114,
4507; (m) Birks, J. B. Photo Physics of Aromatic Molecules; Wiley-Interscience:
New York, 1970.
14. Frisch, M. J. et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT,
2004.
15. (a) Granzhan, A.; Ihmels, H. Org. Lett. 2005, 7, 5119; (b) Wu, F. Y.; Xie, F. Y.; Wu,
Y. M.; Hong, J. I. J. Fluoresc. 2008, 18, 175; (c) Sahoo, D.; Bhattacharya, P.;
Chakravorti, S. J. Phys. Chem. B. 2010, 114, 2044.
16. (a) Ye, B. F.; Zhang, Z. J.; Ju, H. X. Chin. J. Chem. 2005, 23, 58; (b) Sahoo, B. K.;
Ghosh, K. S.; Bera, R.; Dasgupta, S. Chem. Phys. 2008, 351, 163; (c) Ghosh, R.;
Bhowmik, S.; Bagchi, A.; Das, D.; Ghosh, S. Eur. Biophys. J. 2010, 39, 1243.
17. (a) Bresloff, J. L.; Crothers, D. M. Biochemistry 1981, 20, 3547; (b) Wu, H. L.; Li,
W. Y.; He, X. W.; Miao, K.; Liang, H. Anal. Bioanal. Chem. 2002, 373, 163; (c)
Ghaderi, M.; Bathaie, S. Z.; Saboury, A. A.; Sharghi, H.; Tangestaninejad, S. Int. J.
Biol. Macromol. 2007, 41, 173; (d) Nafisi, S.; Bonsaii, M.; Maali, P.; Khalilzadeh,
M. A.; Manouchehri, F. J. Photochem. Photobiol. B: Biol. 2010, 100, 84.
18. Maestro, version 9.0, Schrödinger, LLC, New York, NY, 2009.
Supplementary data
Supplementary data (experimental procedure, characterization,
photophysical spectra, DFT calculation, macromodel structures and
crystal structure) associated with this article can be found, in the
References and notes
1. (a) Peczuh, M. W.; Hamilton, A. D. Chem. Rev. 2000, 100, 2479; (b) Tse, W. C.;
Boger, D. L. Acc. Chem. Res. 2004, 37, 61; (c) Cheng, T.; Xu, Y.; Zhang, S.; Zhu, W.;
Qian, X.; Duan, L. J. Am. Chem. Soc. 2008, 130, 16160; (d) Brun, M. A.; Tan, K.-T.;
Nakata, E.; Hinner, M. J.; Johnsson, K. J. Am. Chem. Soc. 2009, 131, 5873; (d)
Kurishita, Y.; Kohira, T.; Ojida, A.; Hamachi, I. J. Am. Chem. Soc. 2010, 132,
13290; (e) Wang, Y.; Wang, X.; Wang, J.; Zhao, Y.; He, W.; Guo, Z. Inorg. Chem.
2011, 50, 12661; (f) Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev.
2011, 40, 3483; (g) Wysocki, L. M.; Lavis, L. D. Curr. Opin. Chem. Biol. 2011, 15,
752.
2. (a) Okamoto, A.; Tainaka, K.; Fujiwara, Y. J. Org. Chem. 2006, 71, 3592; (b) Bera,
R.; Sahoo, B. K.; Ghosh, K. S.; Dasgupta, S. Int. J. Biol. Macromol. 2008, 42, 14; (c)
Bag, S. S.; Kundu, R.; Katsuhiko, M.; Saito, Y.; Saito, I. Bioorg. Med. Chem. Lett.
2010, 20, 3227; (d) Li, X.-L.; Hu, Y.-J.; Wang, H.; Yu, B.-Q.; Yue, H. L.
Biomacromolecules 2012, 13, 873; (e) Suzuki, Y.; Yokoyama, K. J. Am. Chem.
Soc. 2005, 127, 17799; (f) Loving, G. S.; Imperiali, B. J. Am. Chem. Soc. 2008, 130,
13630; (g) Ojha, B.; Das, G. Chem. Commun. 2010, 46, 2079; (h) Wang, J.-X.;
Chen, Q.; Bian, N.; Yang, F.; Sun, J.; Qi, A.-D.; Yan, C.-G.; Han, B.-H. Org. Biomol.
Chem. 2011, 9, 2219; (h) Banerjee, M.; Pal, U.; Subudhhi, A.; Chakrabarti, A.;
Basu, S. J. Photochem. Photobiol. B: Biol. 2012, 108, 23.