Journal of the American Chemical Society
COMMUNICATION
Scheme 3. Crossover Studies
’ ACKNOWLEDGMENT
We acknowledge financial support from the ARC
(DP0881137) and Monash University (Research Accelerator
Program), helpful discussions with Professor Tomislav Rovis
(Colorado State University), and donation of catalysts (not
discussed).
’ REFERENCES
(1) For a themed issue on complexity generation, see: Davies,
H. M. L.; Sorensen, E. J. Chem. Soc. Rev. 2009, 38, 2981andarticlestherein.
(2) For reviews of Diels-Alder reactions in total synthesis, see: (a)
Juhl, M.; Tanner, D. Chem. Soc. Rev. 2009, 38, 2983. (b) Nicolaou, K. C.;
Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int.
Ed. 2002, 41, 1668.
(3) For
a useful review of 2-pyrones and 2-pyridones in
synthesis, see: (a) Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner,
G. H. Tetrahedron 1992, 48, 9111. For recent examples in catalysis, see:
(b) Soh, J. Y.-T.; Tan, C. H. J. Am. Chem. Soc. 2009, 131, 6904. (c) Singh,
R. P.; Bartelson, K.; Wang, Y.; Su, H.; Deng, L. J. Am. Chem. Soc. 2008,
130, 2422. For enzymatic versions, see: (d) Serafimov, J. M.; Westfeld,
T.; Meier, B. H.; Hilvert, D. J. Am. Chem. Soc. 2007, 129, 9580. (e) Ose,
T.; Watanabe, K.; Mie, T.; Honma, M.; Watanabe, H.; Yao, M.; Oikawa,
H.; Tanaka, I. Nature 2003, 422, 185. For selected studies in total
synthesis, see: (f) Martin, S. F.; R€ueger, H.; Williamson, S. A.; Grzejszczak,
S. J. Am. Chem. Soc. 1987, 109, 6124. (g) Nelson, H. M.; Stoltz, B. M. Org.
Lett. 2008, 10, 25. (h) Baran, P. S.; Burns, N. Z. J. Am. Chem. Soc. 2006,
128, 3908. For methodologies, see: (i) Li, L.; Chase, C. E.; West, F. G.
Chem. Commun. 2008, 4025. (j) Afarinkia, K.; Abdullahi, M. H.; Scowen,
I. J. Org. Lett. 2010, 12, 5564.
(4) For examples of acyl azolium catalysis, see: (a) Chow, K. Y.-K.;
Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126. (b) Reynolds, N. T.; Read
de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 9518. For selected
studies involving acyl azoliums, see:(c) Burstein, C.; Glorius, F. Angew.
Chem., Int. Ed. 2004, 43, 6205. (d) Sohn, S. S.; Rosen, E. L.; Bode, J. W.
J. Am. Chem. Soc. 2004, 126, 14370. (e) Chan, A.; Scheidt, K. A. Org. Lett.
2005, 7, 905. (f) Zeitler, K. Org. Lett. 2006, 8, 637. (g) Maki, B. E.; Chan,
A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371. (h) Vora, H. U.;
Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796. (i) Maki, B. E.; Patterson,
E. V.; Cramer, C. J.; Sheidt, K. A. Org. Lett. 2009, 11, 3942. (j) Philips,
E. M.; Wadamoto, M.; Roth, H. S.; Ott, A. W.; Scheidt, K. A. Org. Lett.
2009, 11, 105. (k) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2010,
132, 2860. (l) De Sarkar, S.; Grimme, S.; Studer, A. J. Am. Chem. Soc.
2010, 132, 1190. (m) Thai, K.; Wang, L.; Dudding, T.; Bilodeau, F.;
Gravel, M. Org. Lett. 2010, 12, 5708.
(5) For NHC-catalyzed reactions involving β-lactones, see: (a) Nair,
V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006,
128, 8736. (b) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem.
Soc. 2007, 129, 3520. (c) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.;
Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098. (d) He, M.; Bode, J. W.
J. Am. Chem. Soc. 2008, 130, 418. (e) Kaeobamrung, J.; Bode, J. W. Org.
Lett. 2009, 11, 677. (f) Phillips, E. M.; Roberts, J. M.; Scheidt, K. A. Org.
Lett. 2010, 12, 2830.
(6) For other approaches to 1,3-cyclohexadienes, see: (a) Peppers,
B. P.; Diver, S. T. J. Am. Chem. Soc. 2004, 126, 9524. (b) Brand€ange, S.;
Leijonmarck, H. Chem. Commun 2004, 292. (c) Peppers, B. P.; Kulkarni,
A. A.; Diver, S. T. Org. Lett. 2006, 8, 2539. (d) Obora, Y.; Satoh, Y.; Ishii,
Y. J. Org. Chem. 2010, 75, 6046. (e) Hayashi, R.; Walton, M. C.; Hsung,
R. P.; Schwab, J. H.; Yu, X. Org. Lett. 2010, 12, 5768.
studies using natural abundance techniques18 were undertaken.
While the precision was modest (eq 8), positive KIEs at C6 and
C7, implicates a concerted (4 þ 2) cycloaddition as the turnover-
limiting step (Scheme 2).19 These data, together with the endo
selectivity and the documented reactivity of related dienolates,20
indicate that a concerted reaction is most likely.
A concerted endo-selective (4 þ 2) cycloaddition results in a
trans arrangement between the acyl azolium and the alkoxide
(i.e., trans-III). However, lactonization and decarboxylation
presumably occur via cis-III. Mechanistically, such an isomeriza-
tion can occur by either an intermolecular proton transfer or a
retro-aldol/aldol sequence.21 To investigate these scenarios, a
crossover experiment involving (R-D)-4a and 4m was under-
taken (Scheme 3). If proton transfer were required, then
scrambling of the deuterium across the two cyclohexadiene
products would have been expected. In the event, complete
deuterium retention (formation of 7D-3a and no 7D-3m)
indicated that the trans-III f cis-III isomerization likely occurs
via a retro-aldol/aldol sequence.
To summarize, we have reported the first all-carbon NHC-
catalyzed (4 þ 2) cycloaddition. The reaction proceeds with a
range of silyl dienol ethers and R,β-unsaturated acid fluorides,
providing 1,3-cyclohexadienes in good yields with excellent
diastereoselectivity. Mechanistic investigations suggest that the
(4 þ 2) cycloaddition proceeds in a concerted fashion with a
preference for endo orientation of the coupling partners. The
catalytic cycle is completed by isomerization via a retro-aldol/
aldol sequence, lactonization, and then decarboxylation. These
studies expound a new class of NHC-catalyzed transformation
involving R,β-unsaturated acyl azoliums22 and will contribute to
further advances in nucleophilic organocatalysis. The application
of this reaction in total synthesis and investigations into the
mechanism using theoretical and experimental approaches are
ongoing.
’ ASSOCIATED CONTENT
S
Supporting Information. Characterization data, NMR
b
(7) For NHC-catalyzed hetero-Diels-Alder reactions, see: (a) He,
M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418. (b) He,
M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088. (c) Zhang,
Y.-R.; Lv, H.; Zhou, D.; Ye, S. Chem.—Eur. J. 2008, 14, 8473. (d) He, M.;
Beahm, B. J.; Bode, J. W. Org. Lett. 2008, 10, 3817. (e) Huang, X.-L.; He,
L.; Shao, P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192. (f)
Kaeobamrung, J.; Kozlowski, M. C.; Bode, J. W. Proc. Natl. Acad. Sci.
U.S.A. 2010, 107, 20661.
spectra, and detailed experimental procedures. This material is
’ AUTHOR INFORMATION
Corresponding Author
4696
dx.doi.org/10.1021/ja111067j |J. Am. Chem. Soc. 2011, 133, 4694–4697