612
M. Pourshahbaz et al. / Polyhedron 28 (2009) 609–613
center [75]. The better solubility of the reactants in CDCl3 also
0.10
0.08
0.06
0.04
0.02
0.00
plays an important role. The difference in the reaction rates make
such kinetic studies very important in the catalytic reactions in
where, a mixture of metal and ligand are used as catalyst. For
example, it is reported that using methanol as solvent, no meth-
oxycarbonylation of 2-bromoaniline was observed. Changing to a
solvent mixture of toluene-methanol increased remarkable the
conversion [76]. This feature is of greater importance particularly
whenever the complex formation between metal and ligand is
the rate determining step and/or one of previous catalytic cycle.
Another noteworthy of such kinetics studies outcome on com-
paring the rate of catalytic reactions using a ML catalyst with
in situ prepared catalyst by addition of metal and ligand. The sim-
ilarity between the rates of both reactions may be an excellent evi-
dence for the presence of a similar mechanism.
[L]
[ML]
60
[M2L2]
50
0
10
20
30
40
70
Time (min)
Fig. 7. Distribution diagram for involving species in the reaction of Pd(II) acetate
and dppf in DMSO-d6 at 25 °C. The solid lines are the best trendlines obtained by
Excel program.
Acknowledgments
The authors thank the Razi University Research Council and
Kermanshah Oil Refining Company for support of this work.
Table 2
Rate constants of the reaction of Pd(II) acetate:dppf (1:2) in DMSO-d6 at 25 °C.
References
Entry Type of reaction
kobs
k2
(sꢀ1 Mꢀ1) ꢂ 102
(sꢀ1) ꢂ 10
[1] J.J. Bishop, A. Davison, M.L. Katcher, D.W. Lichtenberg, R.E. Merrill, J.C. Smart, J.
Organomet. Chem. 27 (1971) 241.
[2] K.-S. Gan, T.S.A. Hor, in: A. Togni, T. Hayashi (Eds.), Ferrocenes-Homogeneous
Catalysis Organic Synthesis Materials Science, VCH, Weinheim, Germany,
1995.
Parallel consecutive and irreversible
reactions
1.0 0.1
1.0 0.1
[3] A.W. Rudie, D.W. Lichtenberg, M.L. Katcher, A. Davison, Inorg. Chem. 17 (1978)
2859.
of the ligand, [L]; the intermediate, [M2L2]; and the final chelating
[4] W.R. Cullen, J.D. Woollins, Coord. Chem. Rev. 39 (1981) 1.
[5] T. Hayashi, M. Kumada, Acc. Chem. Res. 15 (1982) 395.
[6] D.A. Clemente, G. Pilloni, B. Corain, B. Longato, M. Tiripicchino- Camellini,
Inorg. Chim. Acta 115 (1986) L9.
[7] L.-T. Phang, S.C.F. Au-Yeung, T.S.A. Hor, S.B. Khoo, Z.-Y. Zhou, T.C.W. Mak, J.
Chem, Soc. Dalton Trans. 1 (1993) 165.
complex; [ML], with time Eq. (5)
8
ꢀkobs
t
>
½Lꢁ ¼ ½L0ꢁe
½M2L2ꢁ ¼
>
>
<
kobs½Lꢁ
obst
2t
feꢀk ꢀ eꢀk
g
k2ꢀkobs
ð5Þ
n
o
>
>
>
:
1
obst
2t
½MLꢁ ¼ ½Lꢁ 1 ꢀ k
ðk2eꢀk ꢀ kobseꢀk
[8] G.M. deLima, C.A.L. Filgueiras, M.T.S. Giotto, Y.P. Mascarenhas, Transition Met.
Chem. 20 (1995) 380.
2ꢀkobs
[9] S. Otto, A. Roodt, Acta Crystallogr. Sect. C c53 (1997) 1414.
[10] S.A. Bodolosky, S. Schreiner, Synthesis, characterization and reactivity of
platinum -bis(diphenylphosphino) ferrocene complexes: Book of Abstracts, in:
213th ACS National Meeting, San Francisco, 1997, p. 13.
[11] T.A. Peganova, N.V. Vologdin, P.V. Petrovskii, I.D. Nesterov, K.A. Lyssenko, O.V.
Gusev, Russ. Chem. Bull. 55 (2006) 683.
[12] X.L. Lu, S.Y. Ng, J.J. Vittal, G.K. Tan, L.Y. Goh, T.S.A. Hor, J. Organomet. Chem. 688
(2003) 100.
[13] T.J. Colacot, Platinum Met. Rev. 45 (2001) 22.
[14] T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, J. Am.
Chem. Soc. 106 (1984) 158.
[15] B.E. Bosch, I. Brümmer, K. Kunz, G. Erker, R. Frölich, S. Kotila, Organometallics
19 (2000) 1255.
The corresponding rate constants are calculated by Excel-fitting
of the experimental points (Fig. 7) and are given in Table 2.
As Eq. (5) shows, determination of individual amounts of k1 and
k3 is impossible and a summation of them as kobs could be obtained
in this way. An approximate value for these rate constants could be
easily calculated by considering two extremes of Eq. (5)
ꢀ
aÞk1 >> k3 ) kobs ꢃ k1
bÞk1 << k3 ) kobs ꢃ k3
The first extreme was arisen if the consecutive reaction is the
major contributor of the overall rate constant while the second ex-
treme could be obtained if the second-order path is the major
contributor.
The relative magnitude of the kobs [Pd] (sꢀ1) and k2 (sꢀ1) rate
constants shows that the consecutive reaction is the major contrib-
utor of the overall reaction rate. Therefore, the first extreme is
more logic.
Interestingly, the intermediate was observed only in metal to li-
gand mole ratios near 0.5. This may be because both rate of forma-
tion (k1) and consumption (k2) of the intermediate depend on the
concentrations of metal and ligand as a same way (steady state
approximation).
[16] M. Ogasawara, K. Yoshida, T. Hayashi, Organometallics 19 (2000) 1567.
[17] A.L. Boyes, I.R. Butler, S.C. Quayle, Tetrahedron Lett. 39 (1998) 7763.
[18] W. Mägerlein, A.F. Indolese, M. Beller, Angew. Chem. Int. Ed. Engl. 40 (2001)
2856.
[19] M.S. Driver, J.F. Hartwig, J. Am. Chem. Soc. 118 (1996) 7217.
[20] T.E. Müller, M. Berger, M. Grosche, E. Herdtweck, F.P. Schmidtchen,
Organometallics 20 (2001) 4384.
[21] K. Mikami, K. Aikawa, Org. Lett. 4 (2002) 99.
[22] V. Cadierno, P. Crochet, J. Diez, S.E. Garcia-Garrido, J. Gimeno, S. Garcia-
Garrido, Organometallics 22 (2003) 5226.
[23] V. Cadierno, P. Crochet, J. Diez, S.E. Garcia-Garrido, J. Gimeno, Organometallics
23 (2004) 4836.
[24] T. Ohe, N. Miyaura, A. Suzuki, J. Org. Chem. 58 (1993) 2201.
[25] M. Sato, A. Miyaura, A. Suzuki, Chem. Lett. (1989) 1408.
[26] W.J. Thompson, J. Gaudino, J. Org. Chem. 49 (1984) 5237.
[27] O.R. Hughes, J.D. Unruh, J. Mol. Catal. 12 (1981) 71.
[28] B. Therrien, L. Vieille-Petit, J. Jeanneret-Gris, P. Stepnicka, G. Suess-Fink, J.
Organomet. Chem. 689 (2004) 2456.
[29] T. Sixt, J. Fiedler, W. Kaim, Inorg. Chem. Commun. 3 (2000) 80.
[30] P.J. Stang, B. Olenyuk, J. Fan, A.M. Arif, Organometallics 15 (1996) 904.
[31] T.S.A. Hor, S.P. Neo, C.S. Tan, T.C.W. Mak, K.W.P. Leung, R.J. Wang, Inorg. Chem.
31 (1992) 4510.
[32] S.P. Neo, T.S.A. Hor, J. Organomet. Chem. 464 (1994) 113.
[33] S.P. Neo, Z.-Y. Zhou, T.C.W. Mak, T.S.A. Hor, J. Chem. Soc., Dalton Trans. (1994)
3458.
[34] S.G. Bott, K. Yang, M.G. Richmond, J. Chem. Cryst. 25 (1995) 263.
[35] L.T. Phang, T.S.A. Hor, Z.Y. Zhou, T.C.W. Mak, J. Organomet. Chem. 469 (1994)
253.
4. Conclusion
In comparison, the complex formation is faster in CDCl3 than
DMSO, which may be due to the coordinating ability of DMSO. This
coordination probably makes the coordination of dppf slower and
allows the formation of the intermediate. It also decreases the elec-
trophilicity of metal as well as the steric crowding at the metal