Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank the National Science Foundation for support of this
work through Grants CHE-0718117 and CHE-1012578.
’ REFERENCES
(1) Wright, B. B.; Platz, M. S. J. Am. Chem. Soc. 1983, 105, 628–630.
(2) Wenthold, P. G.; Kim, J. B.; Lineberger, W. C. J. Am. Chem. Soc.
1997, 119, 1354–1359.
(3) Neuhaus, P.; Grote, D.; Sander, W. J. Am. Chem. Soc. 2008,
130, 2993–3000.
Figure 3. Persistence of aminyl diradical 2 in 2-MeTHF monitored by
EPR spectroscopy at 134ꢀ136 K: (A) before annealing; (B) after 10 min
at ꢀ27 °C; (C, D) after 10 and 20 min at room temperature.
(4) Haider, K. W.; Migirdicyan, E.; Platz, M. S.; Soundararajan, N.;
Despres, A. J. Am. Chem. Soc. 1990, 112, 733–738.
measured χT value of 0.89 emu K molꢀ1 was corrected for the spin
concentration (Msat = 0.89 μB per aminyl radical site), the value
χT ≈ 1.0 emu K molꢀ1 was obtained, which is exactly the value
expected for an S = 1 diradical. Furthermore, the χT vs T plot was
flat up to 150 K, the highest temperature of the measurement,
providing a lower limit of 200 K (∼0.4 kcal/mol) for ΔEST.
We investigated the reactivity/stability of aza-m-xylylene
diradical 2 in 2-MeTHF by EPR spectroscopy. In the presence
of iodine at ꢀ115 °C, a decay of the EPR signals corresponding
to the triplet diradical was observed. Brief warming to ꢀ78 °C led
to the disappearance of the EPR signals for 2. The diradical
reactivity toward iodine at low temperature made generation of 2
challenging [Scheme 1; also see Table S4 in the Supporting
Information (SI)]. In another experiment, brief exposure of 2 in
2-MeTHF to O2 at ꢀ105 °C resulted in a sharp decrease of the
EPR signal intensity and, in particular, complete disappearance of
the triplet resonances for 2.
In the absence of iodine and oxygen, changes in the EPR
spectra of 2 in 2-MeTHF after brief annealing at ꢀ27 °C were
negligible. However, at room temperature, the intensity of the
EPR signals corresponding to the triplet diradical decreased on
the time scale of minutes, and the EPR spectrum of 2 was still
detectable after 20 min (Figure 3 and Figure S9 in the SI).
We also carried out similar experiments using SQUID mag-
netometry. Magnetic measurements after a sample of 2 in THF
was annealed at ꢀ27 °C for 30 min showed data corresponding
to the triplet diradical. After consecutive annealing sequences of
30 min at 0 °C, 30 min at 22 °C, and another 30 min at 22 °C, the
data indicated a sharp decrease in the diradical signal, though a
trace of the diradical was still detectable after total of 1 h at room
temperature (Figure S11).
(5) (a) Rajca, A.; Wongsriratanakul, J.; Rajca, S. Science 2001,
294, 1503–1505. (b) Rajca, A.; Wongsriratanakul, J.; Rajca, S. J. Am.
Chem. Soc. 2004, 126, 6608–6626. (c) Rajca, S.; Rajca, A.; Wongsrir-
atanakul, J.; Butler, P.; Choi, S. J. Am. Chem. Soc. 2004, 126, 6972–6986.
(d) Rajca, A.; Wongsriratanakul, J.; Rajca, S.; Cerny, R. L. Chem.—Eur. J.
2004, 10, 3144–3157. (e) Rajca, A. Adv. Phys. Org. Chem. 2005,
40, 153–199.
(6) (a) Fukuzaki, E.; Nishide, H. J. Am. Chem. Soc. 2006,
128, 996–1001. (b) Fukuzaki, E.; Nishide, H. Org. Lett. 2006,
8, 1835–1838.
(7) Herrmann, C.; Solomon, G. C.; Ratner, M. A. J. Am. Chem. Soc.
2010, 132, 3682–3684.
(8) ꢂOsorio, E. A.; Moth-Poulsen, K.; van der Zant, H. S. J.; Paaske, J.;
Hedegard, P.; Flensberg, K.; Bendix, J.; Bjørnholm, T. Nano Lett. 2010,
10, 105–110.
(9) (a) Haider, K.; Soundararajan, N.; Shaffer, M.; Platz, M. S.
Tetrahedron Lett. 1989, 30, 1225–1228. (b) Quast, H.; N€udling, W.;
Klemm, G.; Kirschfeld, A.; Neuhaus, P.; Sander, W.; Hrovat, D. A.;
Borden, W. T. J. Org. Chem. 2008, 73, 4956–4961. (c) Zard, S. Z. Chem.
Soc. Rev. 2008, 37, 1603–1618.
(10) (a) Neugebauer, F. A.; Fischer, H.; Bamberger, S.; Smith, H. O.
Chem. Ber. 1972, 105, 2694–2713. (b) Ballester, N.; Castaner, J.;
Olivella, S. Tetrahedron Lett. 1974, 15, 615–616.
(11) Boratynski, P. J.; Pink, M.; Rajca, S.; Rajca, A. Angew. Chem., Int.
Ed. 2010, 49, 5459–5462.
(12) Amiri, S.; Schreiner, P. R. J. Phys. Chem. A 2009, 113, 11750–
11757.
(13) Frisch, M. J.; et al. Gaussian 03, revision E.01; Gaussian, Inc.:
Wallingford, CT, 2004.
(14) (a) Calculated values of ΔEST were corrected for spin con-
tamination and are expected to overestimate the experimental ΔEST
values; diradical 1, aza-m-xylylene, and m-xylylene were treated at the
UB3LYP/6-311þG(d,p) þ ZPVE level and the OHPQ diradical at the
UB3LYP/6-311G(d,p) þ ZPVE level. (b) For the correction for spin
contamination, see: Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N.
Chem. Phys. Lett. 1988, 149, 537–542.(c) Delocalization of spin density
into the 4-tert-butylphenyl pendant in 1 and its effect on the value of
ΔEST were not significant (see Figure S15 and Table S3 in the SI).
(15) Nelsen, S. F.; Landis, R. T.; Kiehle, L. H.; Leung, T. H. J. Am.
Chem. Soc. 1972, 94, 1610–1614.
(16) Krusic, P. J.; Kochi, J. K. J. Am. Chem. Soc. 1968, 90, 7155–7157.
(17) (a) Rajca, A. Chem. Rev. 1994, 94, 871–893. (b) Bushby, R. J.;
Taylor, N.; Williams, R. A. J. Mater. Chem. 2007, 17, 955–964.
(18) (a) Mikhailenko, F. A.; Boguslavskaya, A. N. Chem. Heterocycl.
Compd. 1971, 7, 574–577. (b) Robinson, B. Chem. Rev. 1969,
69, 227–250.
After extended annealing of 2 in 2-MeTHF or THF at room
temperature, we isolated the starting diamine 7 as the main product
(see the SI), thus suggesting a hydrogen abstraction mechanism
similar to that observed for other triplet aminyl diradicals.11,28
In summary, a planar derivative of aza-m-xylylene diradical was
prepared in solution, thus providing first example of an organic
diradical that is persistent at room temperature in solution on the
time scale of minutes and possesses a triplet ground state with a
singletꢀtriplet energy gap of the order of 10 kcal/mol.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete ref 13 and experi-
b
(19) Rodriguez, J. G.; Urrutia, A.; de Diego, J. E.; Martinez-Alcazar,
M. P.; Fonseca, I. J. Org. Chem. 1998, 63, 4332–4337.
(20) Morton, J. R. Chem. Rev. 1964, 64, 453–471.
mental details. This material is available free of charge via the
4752
dx.doi.org/10.1021/ja200708b |J. Am. Chem. Soc. 2011, 133, 4750–4753