Journal of the American Chemical Society
COMMUNICATION
Scheme 1. Derivatization of Adducts Z-4a and Z-4i to 7a
(3) (a) Bella, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 5672.
(b) Wang, X.; Kitamura, M.; Maruoka, K. J. Am. Chem. Soc. 2007,
129, 1038. (c) Chen, Z.; Furutachi, M.; Kato, Y.; Matsunaga, S.;
Shibasaki, M. Angew. Chem., Int. Ed. 2009, 48, 2218. For related
work, see: (d) Poulsen, T. B.; Bernardi, L.; Bell, M; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2006, 45, 6551.
(4) For Z-selective racemic 1,4-addition, see: (a) Jia, C.; Lu, W.;
Oyamada, J.; Kitamura, T.; Matsuda, K.; Irie, M.; Fujiwara, Y. J. Am.
Chem. Soc. 2000, 122, 7252. (b) Grossman, R. B.; Comesse, S.; Rasne,
R. M.; Hattori, K.; Delong, M. N. J. Org. Chem. 2003, 68, 871. (c) Shi, Z.;
He, C. J. Org. Chem. 2004, 69, 3669. (d) Mueller, A. J.; Jennings, M. P.
Org. Lett. 2007, 9, 5327. See also refs 8ꢀ10 for Z-selective 1,4-addition.
(5) Jørgensen also isolated the Z-isomer from the Z/E mixed
product by the selective decomposition of the E-isomer.3a
(6) Misaki, T.; Takimoto, G.; Sugimura, T. J. Am. Chem. Soc. 2010,
132, 6286.
a Conditions: (a) for 4a, 1.0 M NaOH (aq), THF, 0 °C, 1.5 h; (b) for 4i,
CF3CO2H, THF, H2O, 0 °C, 1 h, then rt, 15 h; (c) CH3OLi, CH3OH,
0 °C, 1 h, then rt, 65 h (63% from 4a, 54% from 4i).
The Z/E selectivity order 2g > 2a > 2h was also in agreement
with the proposed mechanism.
(7) For the chiral guanidine catalysis, see: (a) Ishikawa, T. In
Superbases for Organic Synthesis; Ishikawa, T., Ed.; John Wiley & Sons:
Chippenham, 2009; pp 93ꢀ143. For a review, see: (b) Leow, D.; Tan,
C.-H. Chem. Asian J. 2009, 4, 488 and references therein.
(8) (a) Steglich, W.; Gruber, P.; H€ofle, G.; K€onig, W. Angew. Chem.,
Int. Ed. Engl. 1971, 10, 653. (b) Wegmann, H.; Schulz, G.; Steglich, W.
Liebigs Ann. Chem. 1980, 1736.
(9) (a) Lꢀopez, A.; Moreno-Ma~nas, M.; Pleixats, R.; Roglans, A.;
Ezquerra, J.; Pedregal, C. Tetrahedron 1996, 52, 8365. (b) Guillena, G.;
Nꢀajera, C. J. Org. Chem. 2000, 65, 7310. For an exceptionally E-selective
1,4-addition of the Schiff base substrate, see: (c) Rubio, A.; Ezquerra, J.
Tetrahedron Lett. 1995, 36, 5823.
(10) An intramolecular interaction of intermediates had been pro-
posed for the explanation about Z-selectivity in a 1,4-addition of Schiff
base substrates: Freeman, F.; Kim, D. S. H. L. J. Org. Chem. 1993,
58, 6474.
(11) For a [3þ2] cycloaddition via a related intermediate, see:
Obrecht, D.; Zumbrunn, C.; M€uller, K. J. Org. Chem. 1999, 64, 6891.
(12) The absolute configurations of Z-4a, -4h, and -4i and E-4g were
assigned as (R). Except for that of E-4g, they were determined by the
conversion of 7 into the known γ-lactonecarboxylic acid: Partridge, J. J.;
Shiuey, S.-J.; Chadha, N. K.; Baggiolini, E. G.; Blount, J. F.; Uskokoviꢀc,
M. R. J. Am. Chem. Soc. 1981, 103, 1253. See the Supporting Information
for details.
Adducts Z-4 derived from 3a or 3d can be easily converted
into synthetically useful γ-butenolide without loss of enantio-
purity. As illustrated in Scheme 1, the γ-butenolide ring forma-
tion subsequent to the hydrolysis of 5H-oxazol-4-one through
treatment of Z-4a with aqueous NaOH in THF readily afforded
the corresponding imide 6, which was converted into methyl
ester 712 by the CH3OLi-mediated methanolysis. The CF3-
CO2H-mediated acidic hydrolysis also converted adduct Z-4i
into 6. The enantiopurity of 7 was confirmed by HPLC analysis.
In conclusion, we developed a highly Z-selective asymmetric
1,4-addition of 5H-oxazol-4-ones 2 to alkynyl carbonyl com-
pounds 3 and, for the first time, achieved high enantiomeric and
geometric control using chiral guanidine 1c.
’ ASSOCIATED CONTENT
S
Supporting Information. Representative experimental
b
procedures and spectral data for pronucleophiles 2gꢀi, electro-
phile 3c, adducts 4, and derivatized product 7; X-ray crystal-
lographic file in CIF format. This material is available free of
(13) The ring-opening reaction via hydrolysis of the 5H-oxazole ring
of adduct 4 derived from 3d was observed during the 1,4-addition
without MS 3 Å.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We gratefully acknowledge Dr. Hiroki Akutsu for the X-ray
crystallographic analysis.
’ REFERENCES
(1) For organocatalysis, see: (a) Ting, A.; Goss, J. M.; McDougal,
N. T.; Schaus, S. E. In Asymmetric Organocatalysis; List, B., Ed.; Springer:
Berlin and Heidelberg, 2010; pp 145ꢀ200. For metal catalysis, see: (b)
Christoffers, J.; Koripelly, G.; Rosiak, A.; R€ossle, M. Synthesis
2007, 1279.
(2) Examples of natural products, see the following. For
spiculisporic acid: (a) Brown, S. P.; Goodwin, N. C.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2003, 125, 1192. For (þ)-tanikolide: (b)
Wu, F.; Hong, R.; Khan, J.; Liu, X.; Deng, L. Angew. Chem., Int. Ed. 2006,
45, 4301. For (þ)-cylindricine C:(c) Shibuguchi, T.; Mihara, H.;
Kuramochi, A.; Sakuraba, S.; Ohshima, T.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2006, 45, 4635. Also see ref 1b.
5697
dx.doi.org/10.1021/ja200283n |J. Am. Chem. Soc. 2011, 133, 5695–5697