Yuheng Deng et al.
FULL PAPERS
Berry, N. Thomson, A. Pettman, Z. Hyder, J. Mo, J.
Xiao, J. Org. Chem. 2006, 71, 7467–7470; d) W. Pei, J.
Mo, J. Xiao, J. Organomet. Chem. 2005, 690, 3546–
3551; e) J. Mo, L. Xu, J. Xiao, J. Am. Chem. Soc. 2005,
127, 751–760; f) L. Xu, W. Chen, J. Ross, J. Xiao, Org.
Lett. 2001, 3, 295–297.
General Procedure for the Heck Arylation of N,N-
(Boc)2-allylamine
An oven-dried, two-necked, round-bottom flask containing
a stir bar was charged with an aryl bromide (1.0 mmol),
PdACHTUNGTRENNUNG(OAc)2 (6.8 mg, 0.03 mmol), K2CO3 (165.9 mg, 1.2 mmol),
TBAB (322.4 mg, 1.0 mmol), TEMPO (15.6 mg, 0.1 mmol),
N,N-(Boc)2-allylamine (308.8 mg, 1.2 mmol) and water
(3.0 mL) under nitrogen at room temperature. Following de-
gassing three times, the flask was placed in an oil bath, and
the mixture was stirred and heated at 908C. After an appro-
priate reaction time, the flask was removed from the oil
bath and cooled to room temperature. Water (20 mL) was
added, and the mixture was extracted with CH2Cl2 (3ꢂ
20 mL). The combined organic layer was washed with brine,
dried (Na2SO4), filtered, and concentrated under vacuum.
The linear arylated (E)-allylamine was isolated out of the
crude product by flash chromatography on silica gel using
a mixture of ethyl acetate and hexane (5/95 to 20/80).
[5] K. S. A. Vallin, M. Larhed, A. Hallberg, J. Org. Chem.
2001, 66, 4340–4343.
[6] a) Z. Hyder, J. Ruan, J. Xiao, Chem. Eur. J. 2008, 14,
5555–5566; b) D. Xu, Z. Liu, W. Tang, L. Xu, Z. Hyder,
J. Xiao, Tetrahedron Lett. 2008, 49, 6104–6107; c) M.
Liu, Z. Hyder, Y. Sun, W. Tang, L. Xu, J. Xiao, Org.
Biomol. Chem. 2010, 8, 2012–2015; d) J. Ruan, J. A.
Iggo, N. G. Berry, J. Xiao, J. Am. Chem. Soc. 2010, 132,
16689–16699; e) M. McConville, J. Blacker, J. Xiao,
Synthesis 2010, 349–355; f) J. Ruan, J. A. Iggo, J. Xiao,
Org. Lett. 2011, 13, 268–271; g) Z. Liu, D. Xu, W. Tang,
J. Mo, J. Xiao, Tetrahedron Lett. 2008, 49, 2756–2760.
[7] R. K. Arvela, S. Pasquini, M. Larhed, J. Org. Chem.
2007, 72, 6390–6396.
[8] J. Mo, J. Xiao, Angew. Chem. 2006, 118, 4258–4263;
Angew. Chem. Int. Ed. 2006, 45, 4152–4157.
[9] a) C. Amatore, B. Godin, A. Jutand, F. Lemaitre, Orga-
nometallics 2007, 26, 1757–1761; b) C. Amatore, B.
Godin, A. Jutand, F. Lemaitre, Chem. Eur. J. 2007, 13,
2002–2011.
[10] a) P. Colbon, J. Ruan, M. Purdie, K. Mulholland, J.
Xiao, Org. Lett. 2011, 13, 5456–5459; b) M. T. Stone,
Org. Lett. 2011, 13, 2326–2329; c) E. Alacid, C. Najera,
Adv. Synth. Catal. 2007, 349, 2572–2584; d) J. Muzart,
Tetrahedron 2005, 61, 4179–4212.
Acknowledgements
Financial support from the National Natural Science Founda-
tion of China (20873179, 21072225, 20971091 and 21172258),
the Fundamental Research Funds for the Central Universities,
and the Research funds of Renmin University of China
(11XNL011) are gratefully acknowledged.
[11] a) S. Chandrasekhar, Ch. Narsihmulu, S. Shameem Sul-
tana, N. R. Reddy, Org. Lett. 2002, 4, 4399–4401;
b) G. K. Datta, H. von Schenck, A. Hallberg, M.
Larhed, J. Org. Chem. 2006, 71, 3896–3903.
References
[1] For recent reviews, see a) M. Oestreich, The Mizoroki–
Heck reaction, Wiley, Chichester, 2009; b) C. Torborg,
M. Beller, Adv. Synth. Catal. 2009, 351, 3027–3043;
c) N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv.
Synth. Catal. 2006, 348, 609–679; d) K. C. Nicolaou,
P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4516–
4563; Angew. Chem. Int. Ed. 2005, 44, 4442–4489; e) F.
Alonso, I. P. Beletskaya, M. Yus, Tetrahedron 2005, 61,
11771–11835; f) M. Oestreich, Eur. J. Org. Chem. 2005,
783–792.
[2] a) R. F. Heck, Acc. Chem. Res. 1979, 12, 146–151;
b) G. D. Davis, A. Hallberg, Chem. Rev. 1989, 89, 1433–
1445; c) W. Cabirew, W. Candiani, Acc. Chem. Res.
1995, 28, 2–7; d) G. T. Crisp, Chem. Soc. Rev. 1998, 27,
427–436; e) J. P. Knowles, A. Whiting, Org. Biomol.
Chem. 2007, 5, 31–44; f) J. Ruan, J. Xiao, Acc. Chem.
Res. 2011, 44, 614–626.
[12] D. Pan, A. Chen, Y. Su, W. Zhou, S. Li, W. Jia, J. Xiao,
Q. Liu, L. Zhang, N. Jiao, Angew. Chem. 2008, 120,
4807–4810; Angew. Chem. Int. Ed. 2008, 47, 4729–4732.
[13] a) R. B. Cheikh, R. Chaabouni, A. Laurent, P. Mison,
A. Nafti, Synthesis 1983, 685–700; b) M. Johannsen,
K. A. Jorgens, Chem. Rev. 1998, 98, 1689–1708; c) B. M.
Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395–
422; d) T. K. Hollis, L. E. Overman, J. Organomet.
Chem. 1999, 576, 290–299; e) D. Basavaiah, A. J. Rao,
T. Satyanarayana, Chem. Rev. 2003, 103, 811–892.
[14] a) C. A. Busacca, Y. Dong, Tetrahedron Lett. 1996, 37,
3947–3950; b) D. Alvisi, E. Blart, B. F. Bonini, G. Maz-
zanti, A. Ricci, P. Zani, J. Org. Chem. 1996, 61, 7139–
7146; c) Y. Dong, C. A. Busacca, J. Org. Chem. 1997,
62, 6464–6465.
[15] a) K. Olofsson, M. Larhed, A. Hallberg, J. Org. Chem.
2000, 65, 7235–7239; b) K. Olofsson, H. Sahlin, M.
Larhed, A. Hallberg, J. Org. Chem. 2001, 66, 544–549;
c) J. Wu, J. F. Marcous, I. W. Davis, P. J. Reider, Tetra-
hedron Lett. 2001, 42, 159–162; d) C. A. Baxter, E.
Cleator, M. Alam, A. J. Davies, A. Goodyear, M.
OꢀHagan, Org. Lett. 2010, 12, 668–671.
[16] a) D. H. B. Ripin, D. E. Bourassa, T. Brandt, M. J. Cas-
taldi, H. N. Frost, J. Hawkins, P. J. Johnson, S. S. Mas-
sett, K. Neumann, J. Phillips, J. W. Raggon, P. R. Rose,
J. L. Rutherford, B. Sitter, A. M. Stewart, M. G. Veteli-
no, L. Wei, Org. Process Res. Dev. 2005, 9, 440–450;
[3] a) W. Cabri, I. Candiani, A. Bedeschi, S. Penco, R.
Santi, J. Org. Chem. 1992, 57, 1481–1486; b) W. Cabri,
I. Candiani, A. Bedeschi, R. Santi, J. Org. Chem. 1992,
57, 3558–3563; c) W. Cabri, I. Candiani, A. Bedeschi,
R. Santi, J. Org. Chem. 1993, 58, 7421–7426; d) M.
Larhed, A. Hallberg, J. Org. Chem. 1996, 61, 9582–
9584; e) M. Larhed, A. Hallberg, J. Org. Chem. 1997,
62, 7858–7862; f) P. Nilsson, M. Larhed, A. Hallberg, J.
Am. Chem. Soc. 2001, 123, 8217–8225.
[4] a) Z. Hyder, J. Mo, J. Xiao, Adv. Synth. Catal. 2006,
348, 1699–1704; b) J. Mo, L. Xu, J. Ruan, S. Liu, J.
Xiao, Chem. Commun. 2006, 3591–3593; c) S. Liu, N.
906
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2012, 354, 899 – 907