2 The vast majority of fluoride sensors are designed to detect fluoride in
organic solvents where issues related to solvent interactions with fluoride
are minimized. Several recent fluoride sensors now are capable of detect-
ing fluoride in water. These sensors are highlighted in ref. 12, 13, 15.
3 Tetrabutylammonium fluoride (TBAF) contains substantial quantities of
hydroxide.23 This hydroxide likely cleaves silyl ethers and contributes to
the overall activity-based detection event when TBAF is used as the
source of fluoride. In other words, the use of TBAF may not accurately
reflect the ability of a fluoride sensor to detect fluoride that is dissolved in
water.
(e) I. H. A. Badr and M. E. Meyerhoff, J. Am. Chem. Soc., 2005, 127,
5318; (e) M. J. Bayer, S. S. Jalisatgi, B. Smart, A. Herzog, C. B. Knobler
and M. F. Hawthorne, Angew. Chem., Int. Ed., 2004, 43, 1854;
(f) A. Oehlke, A. A. Auer, I. Jahre, B. Walfort, T. Rueffer, P. Zoufala,
H. Lang and S. Spange, J. Org. Chem., 2007, 72, 4328; (g) Y. Kim and
F. P. Gabbaï, J. Am. Chem. Soc., 2009, 131, 3363; (h) C. R. Wade, I.-
S. Ke and F. P. Gabbaï, Angew. Chem., Int. Ed., 2012, 51, 478.
14 (a) Y. Li, C. Lifeng and H. Tian, J. Org. Chem., 2006, 71, 8279; (b) D.
A. Jose, D. K. Kumar, B. Ganguly and A. Das, Org. Lett., 2004, 6, 3445;
(c) Y. Qu, J. Hua and H. Tian, Org. Lett., 2010, 12, 3320; (d) Y. Shiraishi,
H. Maehara, T. Sugii, D. Wang and T. Hirai, Tetrahedron Lett., 2009, 50,
4293; (e) C. B. Black, B. Andrioletti, A. C. Try, C. Ruiperez and J.
L. Sessler, J. Am. Chem. Soc., 1999, 121, 10438; (f) H. Miyaji, W. Sato
and J. L. Sessler, Angew. Chem., Int. Ed., 2000, 39, 1777.
4 Only two other fluoride sensors have been reported that amplify signal
for the detection event. They are ref. 15a, which detects fluoride in
organic solvent, and ref. 5, which is complimentary to the sensor
described in this Communication.
5 R. Perry-Feigenbaum, E. Sella and D. Shabat, Chem.–Eur. J., 2011, 17,
12123.
15 (a) T.-H. Kim and T. M. Swager, Angew. Chem., Int. Ed., 2003, 42, 4803;
(b) S. Y. Kim and J.-I. Hong, Org. Lett., 2007, 9, 3109; (c) C.-Q. Zhu, J.-
L. Chen, H. Zheng, Y.-Q. Wu and J.-G. Xu, Anal. Chim. Acta, 2005, 539,
311; (d) J. F. Zhang, C. S. Lim, S. Bhuniya, B. R. Cho and J. S. Kim,
Org. Lett., 2011, 13, 1190; (e) O. A. Bozdemir, F. Sozmen,
O. Buyukcakir, R. Guliyev, Y. Cakmak and E. U. Akkaya, Org. Lett.,
2010, 12, 1400.
6 (a) S. Jagtapt, M. K. Yenkie, N. Labhsetwart and S. Rayalu, Chem. Rev.,
2012, DOI: 10.1021/cr2002855; (b) M. Mohapatra, S. Anand, B.
K. Mishra, D. E. Giles and P. Singh, J. Environ. Manage., 2009, 91, 67.
7 S. Ayoob and A. K. Gupta, Crit. Rev. Environ. Sci. Technol., 2006, 36,
433.
8 Certain resource-limited regions in India provide a case-in-point. It is esti-
mated that approximately 60 million people in India are ingesting water
that contains levels of fluoride that are above the recommended limit, and
that of these 60 million, 6 million now have crippling osteoporosis as a
result.D. R. Ready, Neurol. India, 2009, 57, 7.
9 C.-Q. Zhu, J.-L. Chen, H. Zheng, Y.-Q. Wu and J.-G. Xu, Anal. Chim.
Acta, 2005, 539, 311.
10 Since the deleterious health effects associated with fluoride are the conse-
quence of long-term ingestion of water that contains high levels of
fluoride, a sensor for use in resource-limited environments does not
necessarily need to provide rapid results for an assay.
11 (a) Z.-H. Lin, Y.-G. Zhao, C.-Y. Duan, B.-G. Zhang and Z.-P. Bai, Dalton
Trans., 2006, 3678; Z.-H. Lin, S.-J. Ou, C.-Y. Duan, B.-G. Zhang and Z.-
P. Bai, Chem. Commun., 2006, 624(b) R. Hu, J. Feng, D. Hu, S. Wang,
S. Li, Y. Li and G. Yang, Angew. Chem., Int. Ed., 2010, 49, 4915.
12 (a) M. Takeuchi, T. Shioya and T. M. Swager, Angew. Chem., Int. Ed.,
2001, 40, 3372; (b) S. Guha and S. Saha, J. Am. Chem. Soc., 2010, 132,
17674; (c) S. Watanabe, H. Seguchi, K. Yoshida, K. Kifune, T. Tadaki
and H. Shiozaki, Tetrahedron Lett., 2005, 46, 8827.
13 (a) C. R. Wade, A. E. J. Broomsgrove, S. Aldridge and F. P. Gabbaï,
Chem. Rev., 2010, 110, 3958; (b) S. Yamaguchi, S. Akiyama and
K. Tamao, J. Am. Chem. Soc., 2001, 123, 11372; (c) Q. Zhao, F. Li,
S. Liu, M. Yu, Z. Liu, T. Yi and C. Huang, Inorg. Chem., 2008, 47, 9256;
16 M. S. Baker and S. T. Phillips, J. Am. Chem. Soc., 2011, 133, 5170.
17 S. A. Nuñez, K. Yeung, N. S. Fox and S. T. Phillips, J. Org. Chem.,
2011, 76, 10099.
18 We previously described reagent 1 as a general signal amplification
reagent that could be paired with a second detection reagent that released
fluoride upon reaction with a specific analyte (we demonstrated the detec-
tion of Pd(0)).16 In this article, we now describe several advances that
arise as a result of a year-long study on the mechanism and kinetics of
the reaction of 1 with fluoride. These advances include (i) the develop-
ment of a convenient assay procedure for detecting aqueous fluoride, (ii)
the development of optimized assay conditions that enable 1 to detect rel-
evant levels of fluoride in water, and (iii) the development of an exceed-
ingly efficient synthesis route that provides 1 in high yield in a single
synthetic step.
19 M. B. Smith and J. March, March’s Advanced Organic Chemistry, Wiley,
Hoboken, New Jersey, 6th edn, 2007, p. 1609.
20 A. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas III, H. Sindi and
G. M. Whitesides, Anal. Chem., 2008, 80, 3699.
21 D.-G. Cho and J. L. Sessler, Chem. Soc. Rev., 2009, 38, 1647.
22 K. M. Schmid and S. T. Phillips, unpublished work.
23 (a) D. P. Cox, J. Terpinski and W. Lawrynowicz, J. Org. Chem., 1984,
49, 3216; (b) A. S. Pilcher, H. L. Ammon and P. DeShong, J. Am. Chem.
Soc., 1995, 117, 5166.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 3595–3599 | 3599