For instance, a range of substrates having carboxylic acid,
carboxamide, or acetyl groups are readily olefinated under
Rh-catalyzed oxidative conditions (Scheme 1).8 It was
demonstrated that acetophenones or benzamides are suita-
ble substrates for the ortho-olefination using the Rh(III)
catalytic system.6g In addition, oxime has been revealed as
excellent directing group in the Rh-catalyzed oxidative aryl
coupling with unactivated alkenes.6h Despite these signifi-
cant contributions, there is still room for further improve-
ment with regard to substrate scope and reaction
conditions. For example, esters or carboxaldehydes are
seldom used as directing groups in catalytic CꢀH bond
functionalization.9 This aspect is noteworthy since those
functional groups are not only readily available but also
easily converted to others such as alcohols, amides, or other
carbonyl compounds.10 During the course of our studies,11
we found that an ester or carboxaldehyde moiety works as an
efficient directing group in the Rh(III)-catalyzed olefination
of benzoates or benzaldehydes.12
Table 1. Optimization of Reaction Conditionsa
(4) Acetyl moieties as a directing group: (a) Satoh, T.; Kametani, Y.;
Terao, Y.; Miura, M.; Nomura, M. Tetrahedron Lett. 1999, 40, 5345.
(b)Terao, Y.;Kametani, Y.;Wakui, H.;Satoh, T.;Miura, M.;Nomura, M.
Tetrahedron 2001, 57, 5967. (c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.;
Murai, S. J. Am. Chem. Soc. 2003, 125, 1698. (d) Gandeepan,
P.; Parthasarathy, K.; Cheng, C.-H. J. Am. Chem. Soc. 2010, 132, 8569.
For a recent report on the Pd-catalyzed ortho-amidation of aromatic
ketones, see:(e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46,
677. (f) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-J.; Liu, L. J. Am. Chem. Soc.
2011, 133, 1466.
(5) (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010,
110, 624. (b) Tsuchikama, K.; Kuwata, Y.; Tahara, Y.-k.; Yoshinami,
Y.; Shibata, T. Org. Lett. 2007, 9, 3097. (c) Tanaka, K.; Otake, Y.;
Wada, A.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 2203. (d) Tanaka,
K.; Otake, Y.; Sagae, H.; Noguchi, K.; Hirano, M. Angew. Chem., Int.
Ed. 2008, 47, 1312.
(6) (a) Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212.
(b) Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1999, 121, 6616.
(c) Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
7094. (d) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010,
12, 5776. (e) Wang, F.; Song, G.; Li, X. Org. Lett. 2010, 12, 5430.
(f) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9982.
(g) Patureau, F. W.; Besset, T.; Glorius, F. Angew. Chem., Int. Ed. 2011,
50, 1064. (h) Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. Org.
Lett. 2011, 13, 540. (i) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F.
J. Am. Chem. Soc. 2011, 133, 2350. For an additional example of using
[RhCp*Cl2]2 catalyst in the oxidative addition of aryl or alkyl groups to
imine, see: (j) Tsai, A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A.
J. Am. Chem. Soc. 2011, 133, 1248. (k) Li, Y.; Li, B.-J.; Wang, W.-H.;
Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed.
2011, 50, 2115.
(7) For additional examples of using [RhCp*Cl2]2 catalyst in the
oxidative addition of aryl or alkyl groups to alkynes, see: (a) Hyster,
T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565. (b) Rakshit, S.;
Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585. (c) Too,
P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12, 5688. (d) Guimond, N.;
Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
(e) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem.
Soc. 2011, 133, 2154.
(8) For recent examples of the oxidative olefination or olefin hydro-
arylation of electron-deficient arenes, see: (a) Zhang, Y.-H.; Shi, B.-F.;
Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072. (b) Sun, Z.-M.; Zhang, J.;
Manan, R. S.; Zhao, P. J. Am. Chem. Soc. 2010, 132, 6935. (c) Zhang, X.;
Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.; Jiang, Z.-X. J. Am.
Chem. Soc. 2010, 132, 4506.
(9) Ester groups were used as a directing group with catalysts other
than Rh species: Ru-catalyzed addition of aromatic esters to olefins: (a)
Sonoda, M.; Kakiuchi, F.; Kamatani, A.; Chatani, N.; Murai, S. Chem.
Lett. 1996, 109. (b) Kakiuchi, F.; Ohtaki, H.; Sonoda, M.; Chatani, N.;
Murai, S. Chem. Lett. 2001, 918. Ru-catalyzed hydrovinylation of
alkynes with acrylates. (c) Neisius, N. M.; Plietker, B. Angew. Chem.,
Int. Ed. 2009, 48, 5752.
(10) (a) Esters, Organic. Ullmann’s Encyclopedia of Industrial Chem-
istry; Riemenschneider, W., Bolt, H. M., Eds.; Wiley-VCH: Weinheim, 2005.
(b) Veitch, G. E.; Bridgwood, K. L.; Ley, S. V. Org. Lett. 2008, 10, 3623.
(c) Cao, P.; Raleigh, D. P. J. Am. Chem. Soc. 2010, 132, 4052.
(11) (a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008,
130, 9254. (b) Hwang, S. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc.
2008, 130, 16158. (c) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew.
Chem., Int. Ed. 2009, 48, 9127. (d) Kim, M.; Kwak, J.; Chang, S. Angew.
Chem., Int. Ed. 2009, 48, 8935. (e) Kim, J. Y.; Cho, S. H.; Joseph, J.;
Chang, S. Angew. Chem., Int. Ed. 2010, 49, 9899. (f) Kim, J.; Chang, S.
J. Am. Chem. Soc. 2010, 132, 10272. (g) Kim, S. H.; Chang, S. Org. Lett.
2010, 12, 1868. (h) Kim, S. H.; Yoon, J.; Chang, S. Org. Lett. 2011, 13,
1474.(i) Kwak, J.; Kim, M.; Chang, S. J. Am. Chem. Soc. 2011, 133, 3780.
additive
(mol %)
oxidant
(equiv)
entry
solvent
yield (%)b
1c
2c
3c
4
5d
6
None
Cu(OAc)2 (1.5)
None
1,2-DCE
1,2-DCE
1,2-DCE
1,2-DCE
1,2-DCE
1,2-DCE
1,2-DCE
tAmylOH
DMF
<1
15
84
80
60
82
12
44
<1
<1
10
80
<1
78
AgSbF6(20)
AgSbF6(20)
AgSbF6(10)
AgSbF6(4)
AgSbF6(10)
AgSbF6(10)
AgSbF6(10)
AgSbF6(10)
AgSbF6(10)
AgBF4(10)
AgSbF6(10)
AgSbF6(10)
None
Cu(OAc)2 (1.5)
Cu(OAc)2 (1.5)
Cu(OAc)2 (1.5)
Cu(OAc) (1.5)
Ag2CO3 (1.5)
Cu(OAc)2 (1.5)
Cu(OAc)2 (1.5)
Cu(OAc)2 (1.5)
Cu(OAc)2 (1.5)
Cu(OAc)2 (0.2)
O2
7
8
9
10
11
12
13e
14f
o-Xylene
1,2-DCE
1,2-DCE
1,2-DCE
1,2-DCE
Cu(OAc)2 (0.2)
a Conditions: 1d (0.2 mmol), 2a (0.4 mmol), [RhCp*Cl2]2 (2.5 mol
%), additive, and oxidant with solvent (0.7 mL) for 12 h at 110 °C in a
screw-capped vial. b NMR yield. c 5 Mol % of [RhCp*Cl2]2 was used. d
1
Mol % of [RhCp*Cl2]2 was used. e Carried out in a pressure tube.
f Carried out with [RhCp*(MeCN)3][SbF6]2 (5 mol %).
Ethyl 2-methylbenzoate was chosen as a test substrate to
react with ethyl acrylate using a rhodium(III) catalyst under
various conditions (Table 1). We were pleased to observe
that the [RhCp*Cl2]2 species (5 mol %) exhibited notable
catalytic activity to afford the desired product in high NMR
yield in the presence of AgSbF6 (20 mol %) and 1.5 equiv of
Cu(OAc)2 (entry 3), whereas poor results were obtained in
the absence of either additives (entries 1ꢀ2). The generated
double bond was in an E-form almost exclusively. The
olefination proceeded smoothly even with lower amounts
of Rh catalyst (1 mol %, entry 5). While a similar catalytic
activity of the rhodium catalyst was maintained with the use
of a Cu(I) oxidant (entry 6), the same equivalent of silver
carbonate resulted in a decreased yield (entry 7).
1,2-Dichloroethane was the solvent of choice; other
media provided a sluggish olefination (entries 8ꢀ10).
(12) During the preparation of this manuscript, Glorius et al. re-
ported the Rh-catalyzed olefination of acetophenones (ref 6g). In this
work, it was briefly shown as a footnote (ref 19) that an ester group
directed olefination of ethyl benzoate with styrene took place using the
same Rh catalyst (2.5 mol %, dioxane, 140 °C, 16 h) in 33% yield.
Org. Lett., Vol. 13, No. 9, 2011
2373