3080
K. S. Rao et al.
LETTER
(7) (a) Chandrasekhar, S.; Balaji, S. V.; Rajesh, G. Tetrahedron
Lett. 2010, 51, 5164. (b) Das, T.; Rajib, B.; Samik, N.
Tetrahedron: Asymmetry 2010, 21, 2206. (c) Srihari, P.;
Kumaraswamy, B.; Sankar, P.; Ravishashidhar, V.; Yadav,
J. S. Tetrahedron Lett. 2010, 51, 6174.
(8) (a) Ghosh, S.; Rao, R. V.; Shashidhar, J. Tetrahedron Lett.
2005, 46, 5479. (b) Ghosh, S.; Rao, R. V. Tetrahedron Lett.
2007, 48, 6937.
MeOH)} were in good agreement with the literature val-
ues.2a
O
7, i
6
iii
OPMB
O
PMBO
PMBO
6
(9) (a) Mulzer, J.; Angermann, A.; Münch, W. Liebigs Ann.
Chem. 1986, 825. (b) Chattopadhyay, A. J. Org. Chem.
1996, 61, 6104.
8, ii
5
(10) Alcarez, L.; Hamett, J. J.; Mioskowski, C.; Martel, J. P.;
Le Gall, T.; Shin, D.-S.; Falck, R. J. Tetrahedron Lett. 1994,
35, 5449.
(11) Dale, J. A.; Mosher, S. H. J. Am. Chem. Soc. 1973, 95, 512.
(12) Garegg, P. G.; Samuelson, B. Synthesis 1979, 813.
(13) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(b) Balkrishna, S. B.; Childers, W. B.; Pinnick, H. W.
Tetrahedron 1981, 37, 2091.
O
O
iv
O
O
HO
OH
PMBO
OPMB
OH
OPMB
(14) (a) Analytical data for 5: [a]25D –30.3 (c = 0.82, CHCl3).
1H NMR (300 MHz, CDCl3): d = 7.24–7.30 (m, 4 H), 7.19
(d, J = 8.4 Hz, 2 H), 6.84–6.90 (m, 4 H), 6.78 (d, J = 8.4 Hz,
2 H), 5.73–5.86 (m, 2 H), 5.23–5.36 (m, 5 H), 4.59 (d, J =
11.7 Hz, 1 H), 4.49 (d, J = 10.95 Hz, 1 H), 4.47 (d, J = 10.0
Hz, 1 H), 4.25–4.37 (m, 4 H), 3.82 (m, 1 H), 3.81 (s, 3 H),
3.80 (s, 3 H), 3.75 (s, 3 H), 3.48 (m, 1 H), 2.67 (dd, J = 15.3,
8.1 Hz, 1 H), 2.48 (dd, J = 15.3, 5.3 Hz, 1 H), 1.65–1.74 (m,
3 H), 1.45–1.56 (m, 2 H), 1.21–1.30 (br s, 9 H), 0.88 (t, J =
6.7 Hz, 3 H). 13C NMR (75 MHz, CDCl3): d = 170.6, 159.2,
159.1, 137.5, 135.8, 130.9, 130.7, 130.4, 130.0, 129.3,
118.9, 118.1, 113.7, 81.1, 78.0, 77.5, 76.9, 72.9, 71.6, 70.2,
70.1, 55.3, 41.3, 35.9, 35.2, 31.8, 29.6, 29.2, 25.2, 22.7, 14.1.
IR: 2926, 2858, 1730, 1512, 1246, 1034 cm–1. MS (ESI): m/
z = 711 [M + Na]+. HRMS (ESI): m/z [M + Na]+ calcd for
C42H56O8Na: 711.3872; found: 711.3884. (b) Analytical
data of achaetolide (1): mp 122–124 °C; [a]25D –22 (c = 0.1,
MeOH); {lit.2a [a]25D –27 (c = 0.52, MeOH)}. 1H NMR (300
MHz, CDCl3): d = 6.02 (ddd, J = 15.8, 3.02, 2.26 Hz, 1 H),
5.68 (dd, J = 15.8, 2.3 Hz, 1 H), 4.82 (q, J = 6.8 Hz, 1 H),
4.75 (m, 1 H), 4.57 (m, 1 H), 3.77 (d, J = 9.8 Hz, 1 H), 2.62
(dd, J = 12.1, 3.0 Hz, 1 H), 2.57 (dd, J = 12.1, 3.7 Hz, 1 H),
2.34 (ddd, J = 15.1, 10.5, 8.3 Hz, 1 H), 2.17 (br s, 2 H, OH),
2.03 (br s, 1 H, OH), 1.53–1.68 (m, 2 H), 1.48 (d, J = 15.8
Hz, 1 H), 1.21–1.31 (m, 10 H), 0.87 (t, J = 6.7 Hz, 3 H).
13C NMR (75 MHz, CDCl3): d = 171.0, 130.8, 125.1, 75.3,
73.2, 67.1, 43.8, 36.9, 36.8, 31.7, 29.6, 29.3, 29.1, 24.9, 22.6,
14.0. IR: 2923, 2854, 1739, 1709, 1647, 1513, 1372, 1171
cm–1. MS (ESI): m/z = 323 [M + Na]+.
1
21
Scheme 4 Reagents and conditions: (i) DCC, DMAP, CH2Cl2, 0 °C
to r.t., overnight, 70%; (ii) TPP, DEAD, benzene, 0 °C to r.t., 1 h,
75%; (iii) Grubbs 2nd generation catalyst (10 mol%), toluene, 110 °C,
24 h, 45% (80% based on recovered starting material); (iv) TFA,
CH2Cl2, 0 °C to r.t., 0.5 h, 80%.
In conclusion we have achieved the total synthesis of
achaetolide starting from a single chiral pool material D-
mannitol using ring-closing metathesis as a key step. The
synthesis of its analogues and their biological screening is
under progress, which will be reported in due course.
Acknowledgment
We are thankful to DST, New Delhi, India for financial support
(S.G.) and CSIR, New Delhi, India, (K.S.R. and A.K.C.) for re-
search fellowships.
References and Notes
(1) For a review on synthetic, biosynthetic, and pharmaco-
logical aspects of decanolides, see: Dräger, G.; Kirschning,
A.; Thiericke, R.; Zerlin, M. Nat. Prod. Rep. 1996, 13, 365.
(2) (a) Bodo, B.; Molho, L.; Davoust, D.; Molho, D.
Phytochemistry 1983, 22, 447. (b) Tayone, W. C.; Shindo,
S.; Murakami, T.; Hashimoto, M.; Tanaka, K.; Takada, N.
Tetrahedron 2009, 65, 7464.
(15) (a) Mitsunobu, O. Synthesis 1981, 1. (b) Martin, S. F.;
Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017.
(16) (a) Gradillas, A.; Pérez-Castells, J. Angew. Chem. Int. Ed.
2006, 45, 6086. (b) Deiters, A.; Martin, S. F. Chem. Rev.
2004, 104, 2199. (c) Love, J. A. In Handbook of Metathesis;
Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, 2003, 296–
322. (d) Grubbs, R. H. Tetrahedron 2004, 60, 7117.
(e) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34,
18. (f) Fürstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012.
(17) (a) Mohapatra, D. K.; Ramesh, K. D.; Giardello, M. A.;
Chorghade, M. S.; Gurjar, M. K.; Grubbs, R. H. Tetrahedron
Lett. 2007, 48, 2621. (b) Giri, A. G.; Mondal, M. A.;
Puranik, V. G.; Ramana, C. V. Org. Biomol. Chem. 2010, 8,
398.
(3) Fuchser, J.; Zeeck, A. Liebigs Ann./Recl. 1997, 87.
(4) Ratnayake, A. S.; Yoshida, W. Y.; Mooberry, S. L.;
Hemscheidt, T. Org. Lett. 2001, 3, 3479.
(5) (a) Arnone, A.; Assante, G.; Montorsi, M.; Nasini, G.; Ragg,
E. Gazz. Chim. Ital. 1993, 123, 71. (b) García-Fortanet, J.;
Murga, J.; Falomir, E.; Carda, M.; Marco, A. J. Org. Chem.
2005, 70, 9822.
(6) Otani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am.
Chem. Soc. 1991, 113, 4092.
Synlett 2010, No. 20, 3078–3080 © Thieme Stuttgart · New York