ketones as electrophiles are closely tied to either preformed
enolates7 or in situ-generated enolates with stoichiometric
reducing reagents.8 In these conditions, the direct catalytic
asymmetric intermolecular aldol reactions of unmodified
carbonyl compounds to simple ketones for the construction
of optically active β-hydroxy (tertiary alcohols) carbonyl
compounds should pose a far more difficult challenge.9 To
our knowledge, there is only one method for the direct
asymmetric intermolecular aldol addition to simple ketones
that has been developed to date, by Shibasaki and co-
workers:10 Mg Schiff base complexes catalyzed the direct
aldol reaction/cyclization sequence of R-isothiocyanato es-
ters to simple ketones under proton-transfer conditions.
Herein, we report the first organocatalytic direct asymmetric
intermolecular aldol reactions of 3-isothiocyanato oxindoles
to simple ketones with bifunctional thiourea-tertiary amines
as catalysts; this reaction readily afforded a new family of
enantioenriched spirocyclic oxindoles bearing highly con-
gested contiguous tetrasubstituted carbon stereocenters in
up to 95% yield, 95:5 dr, and 98% ee.
exhibit potent antimicrobial, antitumor, and oviposition-
stimulant biological activities, are awakening intense interest
in the development of efficient methodologies for their synth-
esis and related biological studies.12,14 Very recently, a highly
efficient strategy for the construction of spirobrassinin oxazo-
line analogues (I) through the organocatalyzed asymmetric
synthesis of spirocyclic thiocarbamates was established by
Wang and co-workers (Scheme 1), and a promising antipyre-
tic activity was revealed by the preliminary biological evalua-
tion.13 Taking the correlation between the molecular struc-
tural diversities and the potential biological activities into
account, we notice that the synthesis of another family of
spirobrassinin oxazoline analogues (II) has not been realized
up until now (Scheme 1), let alone relevant further biological
studies of them. We envisioned that this type of spirobrassinin
oxazoline analogues (II) would be readily accessed via the
methylation of the corresponding spiro[thiocarbamate-3,30-
oxindole] precursors (Scheme 1).13
Scheme 2. Strategy for the Direct Asymmetric Intermolecular
Aldol Reaction of 3-Isothiocyanato Oxindoles 2 to Simple
Ketones with Chiral Bifunctional Thiourea
Scheme 1. Spirobrassinin and Its Related Analogues
On the basis of the above considerations and our recent
success in asymmetric organocatalysis,15 we reasoned that a
new class of nucleophilic 3-isothiocyanato oxindoles 2 would
be generated by installing an isothiocyanato group into the
On the other hand, spirocyclic oxindoles are important
subunits frequently found in biologically active compounds.11
Spirobrassinin and its related analogues (Scheme 1),12,13
particular class of spirocyclic oxindole-type phytoalexins that
a
(14) (a) Pedras, M. S. C.; Okanga, F. I.; Zaharia, I. L.; Khan, A. Q.
Phytochemistry 2000, 53, 161. (b) Gross, D. J. Plant. Dis. Prot. 1993, 100,
433.
(8) For selected examples, see: (a) Lam, H. W.; Joensuu, P. M. Org. Lett.
2005, 7, 4225. (b) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O.
Angew. Chem., Int. Ed. 2006, 45, 1292. (c) Zhao, D.; Oisaki, K.; Kanai, M.;
Shibasaki, M. Tetrahedron Lett. 2006, 47, 1403. (d) Zhao, D.; Oisaki, K.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 14440. (e) Oisaki, K.;
Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 7439.
(9) (a) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (b) Cozzi, P. G.;
Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 5969.
(10) Yoshino, T.; Morimoto, H.; Lu, G.; Matsunaga, S.; Shibasaki,
M. J. Am. Chem. Soc. 2009, 131, 17082.
(15) (a) Liao, Y.-H.; Zhang, H.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.;
Yuan, W.-C. Tetrahedron: Asymmetry 2009, 20, 2397. (b) Liao, Y.-H.;
Chen, W.-B.; Wu, Z.-J.; Du, X.-L.; Cun, L.-F.; Zhang, X.-M.; Yuan,
W.-C. Adv. Synth. Catal. 2010, 352, 827. (c) Chen, W.-B.; Du, X.-L.;
Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Tetrahedron 2010, 66, 1441. (d)
Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan,
W.-C. Org. Lett. 2010, 12, 2896. (e) Chen, W.-B.; Wu, Z.-J.; Pei, Q.-L.;
Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2010, 12, 3132. (f)
Liu, X.-L.; Liao, Y.-H.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan,
W.-C. J. Org. Chem. 2010, 75, 4872.
(11) (a) Williams, R. M.; Cox, R. J. Acc. Chem. Res. 2003, 36, 127. (b)
Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36. (c) Marti,
C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209. (d) Galliford, C. V.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(16) For the synthesis of 3-isothiocyanato oxindoles 2, see the
Supporting Information.
(17) For the use of R-isothiocyanato imides as nucleophiles in the
reactions with aldehydes, aldimines, and R-ketoesters, see: (a) Willis,
M. C.; Cutting, G. A.; Piccio, V. J.-D.; Durbin, M. J.; John, M. P.
Angew. Chem., Int. Ed. 2005, 44, 1543. (b) Cutting, G. A.; Stainforth,
(12) (a) Takasugi, M.; Monde, K.; Katsui, N.; Shirata, A. Chem.
Lett. 1987, 1631. (b) Gross, D.; Porzel, A.; Schmidt, J. Z. Naturforsch.
1994, 49c, 281. (c) Monde, K.; Takasugi, M.; Shirata, A. Phytochemistry
1995, 39, 581. (d) Monde, K.; Harada, N.; Takasugi, M.; Kutschy, P.;
Suchy, M.; Dzurilla, M. J. Nat. Prod. 2000, 63, 1312. (e) Monde, K.;
€
N. E.; John, M. P.; Kociok-Kohn, G.; Willis, M. C. J. Am. Chem. Soc.
2007, 129, 10632. (c) Li, L.; Klauber, E. G.; Seidel, D. J. Am. Chem. Soc.
2008, 130, 12248. (d) Shi, Z.; Yu, P.; Chen, P. J.; Zhong, G. Adv. Synth.
Catal. 2009, 351, 2797. (e) Li, L.; Ganesh, M.; Seidel, D. J. Am. Chem.
Soc. 2009, 131, 11648. (f) Jiang, X.; Zhang, G.; Fu, D.; Cao, Y.; Shen, F.;
Wang, R. Org. Lett. 2010, 12, 1544. (g) Vecchione, M. K.; Li, L.; Seidel,
D. Chem. Commun. 2010, 46, 4604. (h) Chen, X.; Zhu, Y.; Qiao, Z.; Xie,
M.; Lin, L.; Liu, X.; Feng, X. Chem.ꢀEur. J. 2010, 16, 10124.
ꢀ
Osawa, S.; Harada, K.; Takasugi, M.; Suchy, M.; Kutschy, P.; Dzurilla,
ꢀ
ꢀ
M.; Balentova, E. Chem. Lett. 2000, 886. (f) Suchy, M.; Kutschy, P.;
Monde, K.; Goto, H.; Harada, N.; Takasugi, M.; Dzurilla, M.;
ꢀ
Balenova, E. J. Org. Chem. 2001, 66, 3940.
(13) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am.
Chem. Soc. 2010, 132, 15328.
Org. Lett., Vol. 13, No. 9, 2011
2473