The Journal of Organic Chemistry
NOTE
conditions. The presence of the 2,3 double bond possibly
facilitates the elimination of both the R and β leaving groups
(C) through antiperiplanar arrangements with respect to the
lone pair on the ring oxygen, owing to its distorted/pseudochair
flipping conformations, as postulated for saturated sugars by
Deslongchamps.34 The stabilization of resulting intermediates
(D and E) through delocalization involving four atoms may also
be responsible for facile elimination of the allyl group.
In summary, we have for the first time demonstrated the use
of O-allyl glycosides as donors in a facile and stereoselective
R-O-glycosylation of alcohols in a single step under mild experi-
mental conditions. The stabilities of the sensitive groups such as
acetonide, keto, nitro, ester, etc. toward the reagent system are
the added advantages. The O-allyl glycoside may well serve as an
easy and economical substitute to pentenyl glycosides as a
glycosyl donor in 2,3-unsaturated sugar systems. Moreover,
due to the presence of a double bond, the glycosylated products
can easily be structurally modified to other useful bioactive
molecules. The reagent system is also applicable for the glyco-
sylation of various natural products.
Hashimoto, S. Chem. Commun. 1999, 1259. (c) Manabe, S.; Ishii, K.; Ito,
Y. J. Am. Chem. Soc. 2006, 128, 10666. (d) Yu, C.; Niikura, K.; Lin, C.;
Wong, C. Angew. Chem., Int. Ed. 2001, 40, 2900.
(2) (a) Tanaka, H.; Takahashi, D.; Takahashi, T. Angew. Chem., Int.
Ed. 2006, 118, 784. (b) Gandolfi-Donadío, L.; Gola, G.; de Lederkremer,
R. M.; Gallo-Rodriguez, C. Carbohydr. Res. 2006, 341, 2487.
(3) Du, W.; Kulkarni, S. S.; Gervay-Hague, J. Chem. Commun.
2007, 2336.
(4) (a) Matsumura, F.; Oka, N.; Wada, T. Org. Lett. 2008, 10, 5297.
(5) Jia, Z.; Koike, K.; Nikaido, T. J. Nat. Prod. 1999, 62, 449.
(6) Galonic, D. P.; Gin, D. Y. Nature 2007, 446, 1000.
(7) Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B.
J. Am. Chem. Soc. 1988, 110, 5583.
(8) (a) Borisova, S. A.; Guppi, S. R.; Kim, H. J.; Wu, B.; Penn, J. H.;
Liu, H.; O’Doherty, G. A. Org. Lett. 2010, 12, 5150. (b) Fakha, G.; Sinou,
D. Molecules 2005, 10, 860.
(9) (a) Tolstikov, A. G.; Tolstikov, G. A. Russ. Chem. Rev. 1993,
62, 579. (b) Fraser-Reid, B. Acc. Chem. Res. 1985, 18, 347. (c) Ferrier,
R. J. Adv. Carbohydr. Chem. Biochem. 1969, 24, 199.
(10) (a) Kusumi, S.; Sasaki, K.; Watanabe, S.; W. T. Takahashi, D.;
Toshima, K. Org. Biomol. Chem. 2010, 8, 3164. (b) Sasaki, K.; Matsu-
mura, S.; Toshima, K. Tetrahedron Lett. 2006, 47, 9039.
(11) Williams, N. R.; Wander, J. D. The Carbohydrates in Chemistry
and Biochemistry; Academic Press: New York, 1980; p 761.
(12) (a) Bracherro, M. P.; Cabrera, E. F.; Gomez, G. M.; Peredes,
L. M. R. Carbohydr. Res. 1998, 181, 308. (b) Schmidt, R. R.; Angerbauer,
R. Carbohydr. Res. 1979, 72, 272.
(13) Dorgan, B. J.; Jackson, R. F. W. Synlett 1996, 859.
(14) (a) Liu, Z. J. Tetrahedron: Asymmetry 1999, 10, 211. (b)
Seeberger, P. H. Aldrichimica Acta 1997, 30, 75. (c) Danishefsky, S. J.;
Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 120, 13515.
(15) Schmidt, R. R.; Angerbauer, R. Angew. Chem., Int. Ed. Engl.
1977, 16, 783.
(16) Nagaraj, P.; Ramesh, N. G. Eur. J. Org. Chem. 2008, 4607.
(17) (a) Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Chem. Soc., Chem.
Commun. 1987, 1462. (b) Mootoo, D. R.; Date, V.; Fraser-Reid, B. J. Am.
Chem. Soc. 1988, 110, 2662.
(18) Fraser-Reid, B.; Konradsson, P.; Mootoo, D. R.; Udodong, U.
J. Chem. Soc., Chem. Commun. 1988, 823.
’ EXPERIMENTAL SECTION
Typical Procedure for the Synthesis of (2R,3S)-6-
(4-Nitrobenzyloxy)-3-(benzyloxy)-2-((benzyloxy)methyl)-3,
6-dihydro-2H-pyran (3): NBS (116.7 mg, 0.655 mmol) and Zn(OTf)2
(10 mol %, 20 mg) were successively added to a solution of allyl glycoside
1a (200 mg, 0.546 mmol) and p-nitrobenzyl alcohol 2 (125.4 mg, 0.819
mmol) in DCM (3 mL) and the solution was stirred for 8 h at rt. The
reaction mixture after extraction with diethyl ether, usual workup, and
purification through column chromatography on alumina afforded pure
compound 3 as an oily liquid in 90% yield: [R]25D þ13.1 (c 3.2 CHCl3);
1H NMR (500 MHz, CDCl3) δ 8.15 (m, 2H), 7.49 (m, 2H), 7.29 (m,
10H), 6.13 (d, 1H, J = 10.3 Hz), 5.85 (m, 1H), 5.14 (d, 1H, J = 1.6 Hz),
4.89 (d, 1H, J = 13.1 Hz), 4.43ꢀ4.69 (m, 5H), 4.17 (m, 1H), 3.94 (m, 1H),
3.69 (dd, 1H, J = 10.6 Hz, 4.2 Hz), 3.60 (dd, 1H, J = 10.6 Hz, 4.4 Hz); 13C
NMR (125 MHz, CDCl3) δ 147.3, 145.8, 137.9, 137.8, 131.3, 128.4, 128.3,
128.0, 127.9, 127.8, 127.7, 127.6, 125.9, 123.6, 94.5, 73.4, 71.2, 70.2, 69.6,
68.8, 68.7; ESI-MS (M þ Na)þ 484. Anal. Calcd for C27H27NO6: C,
70.27; H, 5.90; N, 3.03. Found: C, 70.67; H, 5.88; N, 3.05.
(19) Rodebaugh, R.; Fraser-Reid, B. J. Am. Chem. Soc. 1994,
116, 3155.
(20) (a) Boons, G. J.; Heskamp, B.; Hout, F. Angew. Chem., Int. Ed.
Engl. 1996, 35, 2845. (b) Boons, G. J.; Isles, S. J. Org. Chem. 1996,
61, 4262. (c) Johnson, M.; Arles, C.; Boons, G. J. Tetrahedron Lett. 1998,
39, 9801.
’ ASSOCIATED CONTENT
(21) Wang, P.; Haldar, P.; Wang, Y.; Hu, H. J. Org. Chem. 2007,
72, 5870.
S
Supporting Information. Experimental procedures,
b
characterization data, and copies of H and 13C NMR spectra.
1
(22) (a) Shing, K. M. T.; Zhong, Y. L.; Mak, T. C. W.; Wang, R. J.;
Xue, F. J. Org. Chem. 1998, 63, 414. (b) Gholap, S. L.; Woo, C. M.;
Ravikumar, P. C.; Herzon, S. B. Org. Lett. 2009, 11, 4322.
(23) (a) Lee, J.; Cha, J. K. Tetrahedron Lett. 1996, 37, 3663.
(c) Honda, M.; Morita, H.; Nagagura, I. J. Org. Chem. 1997, 62, 8932.
(24) Mukherjee, D.; Sarkar, S. K.; Chowdhury, U. S.; Taneja, S. C.
Tetrahedron Lett. 2007, 48, 663.
(25) (a) Mukherjee, D.; Yousuf, S. K.; Taneja, S. C. Org. Lett. 2008,
10, 4831. (b) Mukherjee, D.; Shah, B. A.; Gupta, P.; Taneja, S. C. J. Org.
Chem. 2007, 72, 8965. (c) Yousuf, S. K.; Taneja, S. C.; Mukherjee, D.
J. Org. Chem. 2010, 75, 3097.
This material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
*Phone: þ91 191 2569000-6 EPBAX 260. Fax: þ91 191
2569333. E-mail: sctaneja@iiim.ac.in.
(26) Kumar, B.; Aga, M. A.; Mukherjee, D.; Chimni, S. S.; Taneja,
S. C. Tetrahedron Lett. 2009, 50, 6236.
’ ACKNOWLEDGMENT
(27) (a) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides; Pergamon
Press: Tarrytown, NY, 1995. (b) Lopez, J. C.; Gomez, A. M.; Valverde, S.;
Fraser-Reid, B. J. Org. Chem. 1995, 60, 3851. (c) Bhagavathy, S.; Bose, A. K.;
Balasubramanian, K. K. Tetrahedron Lett. 2002, 43, 6795.
(28) Shah, B. A.; Qazi, G. N.; Taneja, S. C. Nat. Prod. Rep. 2009,
26, 72.
The authors (B.K., M.A.A., and A.R.) thank UGC and CSIR,
New Delhi, for the award of fellowships. We also thank Mr.
Samar Singh for his technical assistance.
’ REFERENCES
(1) (a) Lu, Y.; Li, Q.; Zhang, L.; Ye, X. Org. Lett. 2008, 10, 3445.
(b) Tanaka, H.; Sakamoto, H.; Sano, A.; Nakamura, S.; Nakajima, M.;
(29) (a) Kashyap, S.; Hotha, S. Tetrahedron Lett. 2006, 47, 2021.
(b) Kim, H.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 1336.
3509
dx.doi.org/10.1021/jo102333x |J. Org. Chem. 2011, 76, 3506–3510