S. Balieu et al. / Tetrahedron Letters 52 (2011) 2876–2880
2879
G.; Chao, W. J. J. Org. Chem. 2003, 69, 2768–2772; (f) Navarro-Vázquez, A.;
Rodríguez, D.; Martínez-Esperón, M. F.; García, A.; Saá, C.; Domínguez, D.
Tetrahedron Lett. 2007, 48, 2741–2743; (g) Fukuda, T.; Iwao, M. Heterocycles
2007, 74, 701–720; (h) Chang, J. K.; Chang, N. C. Tetrahedron 2008, 64, 3483–
3487; (i) Wakchaure, P. B.; Easwar, S.; Argade, N. Synthesis 2009, 10, 1667–
1672; (j) Lee, C. S.; Yu, T. C.; Luo, J. W.; Cheng, Y. Y.; Chuang, C. P. Tetrahedron
Lett. 2009, 50, 4558–4562; (k) Lee, G. E.; Lee, H. S.; Lee, S. D.; Kim, J. H.; Kim, W.
K.; Kim, Y. C. Bioorg. Med. Chem. Lett. 2009, 19, 954–958.
O
CF3
O
CF3
a
N
N
TMS
Br
TMS
7f
5. (a) Klimek, M.; Hnilica, L. Arch. Biochem. Biophys. 1959, 81, 105–110; (b)
Yamagishi, M. J. Cell Biol. 1962, 15, 589–592; (c) Krey, A. K.; Hahn, F. E. Science
1969, 166, 755–757; (d) Davidson, M. W.; Loop, I.; Alexander, S.; Wilson, W. D.
Nucleic Acids Res. 1977, 4, 2697–2712; (e) Cushman, M.; Dekow, F. W.; Jacobsen,
L. B. J. Med. Chem. 1979, 22, 331–333; (f) Rungsitiyakorn, A.; Wilairat, P.;
Panjipan, B. J. Pharm. Pharmacol. 1981, 33, 125–127; (g) Chen, W. H.; Qin, Y.;
Cai, Z.; Chan, C. L.; Luo, G. A.; Jiang, Z. H. Bioorg. Med. Chem. 2005, 13, 1859–
1866; (h) Maiti, M.; Kumar, G. S. Med. Res. Rev. 2007, 5, 649–695; (i) Grycová, L.;
Dostál, J.; Marek, R. Phytochemistry 2007, 68, 150–175; (j) Sinsha, R.; Kumar, G.
S. J. Phys. Chem. B 2009, 113, 13410–13420.
b
O
CF3
O
CF3
N
N
TMS
TMS
10
Scheme 5. Reagents and conditions: (a) AIBN, Bu3SnH, benzene, 80 °C; (b) (i) NaOH
1 M, (ii) silica gel, 29%.
6. Davis, F. A.; Mohanty, P. K. J. Org. Chem. 2002, 67, 1290–1296. and references
cited therein.
7. (a) Janousek, Z.; Collard, J.; Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1972, 11,
917–918; (b) Zaug, H. E.; Swett, L. R.; Stone, G. R. J. Org. Chem. 1958, 23, 1389–
1390; (c) Hsung, R. P.; Zificsak, C. A.; Wie, L.-L.; Douglas, C. J.; Mulder, J. A.;
Xiong, H. Org. Lett. 1999, 1, 1237–1240; (d) Balsamo, A.; Macchia, B.; Macchia,
F.; Rosselo, A. Tetrahedron Lett. 1985, 26, 4141–4144; (e) Dunetz, J. R.;
Danheiser, R. L. Org. Lett. 2003, 5, 4011–4014; (f) Witulski, B.; Stengel, T.
Angew. Chem., Int. Ed. 1998, 37, 489–492.
8. (a) Mori, M.; Chiba, K.; Ban, Y. J. Org. Chem. 1978, 1684–1687; (b) Johnston, J. N.;
Plotkin, M. A.; Viswanathan, R.; Prabhakaran, E. N. Org. Lett. 2001, 3, 1009–
1011; (c) Viswanathan, R.; Prabhakaran, E. N.; Plotkin, M. A.; Johnston, J. N. J.
Am. Chem. Soc. 2003, 125, 163–168.
9. Soledad, M.; Pedras, C.; Kahn, A. Q.; Smith, K. C.; Stettner, S. L. Can. J. Chem.
1997, 75, 825–828.
10. Zefirov, N.; Zhdankin, V.; Koz’min, A. Izvestiya Akad. Nauk SSSR, Seriya Khim.
1983, 7, 1530–1531.
11. General procedure for the formation of ynamides: KHMDS (5.36 mL, 2.68 mmol,
0.5 M solution in toluene) was added to a solution of amide (2.42 mmol) in
anhydrous toluene (90 mL) at room temperature. The reaction mixture was
heated to 80 °C for 2 h. Phenyl-trimethylsilyl ethynyl iodonium triflate
(3.03 mmol) was then added. After 30 min the resulting mixture was cooled
to room temperature, quenched with 12 g of silica, then concentrated and the
residue was purified by flash chromatography (petroleum ether/diethylether
90:10).
12. Hauser, C. R.; Weiss, M. J. J. Org. Chem. 1949, 14, 310–321.
13. Newkome, G. R.; Joo, Y. J.; Evans, D. W.; Pappalardo, S.; Fronczek, F. R. J. Org.
Chem. 1988, 53, 786–790.
14. General procedure for radical cyclization: Tributyltin hydride (0.88 mmol) and
AIBN (0.22 mmol) were added to a degassed solution of ynamide (0.44 mmol)
in benzene (30 mL). The reaction mixture was refluxed until TLC indicated that
the starting material had completely reacted, then cooled to room
temperature. 1 M aq NaOH (30 mL) was added and the resulting mixture
was stirred for 30 min then extracted with ethyl acetate (2 Â 40 mL), dried
over MgSO4 and concentrated. The residue was purified by flash
chromatography (petroleum ether/ethyl acetate: 97:3) to afford the cyclized
products.
Figure 3. The X-ray crystal structure of 10.
extended our methodology to a radical cyclization cascade to effi-
ciently access a new protoberberine analog.
Acknowledgments
15. (a) Hallberg, A.; Svensson, A.; Martin, A. R. Tetrahedron Lett. 1986, 27, 1959–
1962; (b) Liu, Z.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 13112–13113.
16. 3-(3,4-Dihydroisoquinolin-1(2H)-ylidene)-1,1,1-trifluoro-3-(trimethylsilyl)
propan-2-one 8: 1H NMR (400 MHz, CDCl3) d 11.58 (br s, 1H), 7.75 (d, J = 8.0 Hz,
1H), 7.51 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 8.4 Hz, 1H), 5.98 (s, 1H), 3.61 (qt,
J = 7.6 Hz, 2H), 3.00 (t, J = 7.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) d 176.10 (q,
J = 33 Hz, CO), 162.38, 136.62, 132.65, 128.43, 127.63, 127.56, 126.18, 115.55
(q, J = 287 Hz, CF3), 83.83, 38.90, 27.57; 19F NMR (376 MHz, CDCl3) d À76.79; IR
The authors wish to thank Professor Max Malacria and his
group for generous procurement of reagents and friendly support.
S.B. wishes to thank Dr. Karen Plé for her generous contribution to
this work and Dr. Guillaume Anquetin for his help.
(KBr)
12H10NONaF3: calcd 264.0612; found 264.0616, CCDC 772462 contains the
m
(cmÀ1): 3052, 2984, 1619, 1582, 1564, 1264, 737; HRMS (ESI) for
Supplementary data
C
supplementary crystallographic data for this molecule.
17. 10,12-Dimethoxy-5H-isoquinolino[3,2-a]isoquinolin-8(6H)-one 9: 1H NMR
(400 MHz, CDCl3) d 7.88 (dd, J = 7.2 Hz, J = 1.4 Hz, 1H), 7.45 (d, J = 1.4 Hz, 1H),
7.37 (s, 1H), 7.36-7.23 (m, 3H), 6.70 (d, J = 1.4 Hz, 1H), 4.43 (t, J = 8.0 Hz, 2H),
3.98 (s, 3H), 3.97 (s, 3H), 3.05 (t, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) d
161.43, 159.27, 155.97, 134.76, 134.51, 130.68, 128.62, 124.84, 122.61, 102.86,
99.05, 97.39, 55.81, 55.73, 39.87, 28.57; HRMS (ESI) for C19H7NO3Na: calcd
330.1106; found 330.1103. CCDC 772463 contains the supplementary
crystallographic data for this molecule.
18. (a) Anies, C.; Lallemand, J.-Y.; Pancrazi, A. Tetrahedron Lett. 1996, 37, 5523–
5526; (b) Gómez, A. M.; Moreno, E.; Valverde, S.; López, J. C. Chem. Commun.
1999, 175–176; (c) Gómez, A. M.; Moreno, E.; Valverde, S.; López, J. C.
Tetrahedron Lett. 2002, 43, 5559–5562; (d) Gómez, A. M.; Moreno, E.; Valverde,
S.; López, J. C. Tetrahedron Lett. 2002, 43, 7863–7866; (e) Alabugin, I. V.;
Gilmore, K.; Patil, S.; Manoharan, M.; Kovalenko, S. V.; Clark, R. J.; Ghiviriga, I. J.
Am. Chem. Soc. 2008, 130, 11535–11545; (f) Kuo, Y.-L.; Dhanasekaran, M.; Sha,
C.-K. J. Org. Chem. 2009, 74, 2033–2038; (g) Jones, S. B.; Simmons, B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606–13607.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.
Tetrahedron 2001, 57, 7575–7606; (b) Marion, F.; Courillon, C.; Malacria, M. Org.
Lett. 2003, 5, 5095–5097; (c) Marion, F.; Coulomb, J.; Servais, A.; Courillon, C.;
Fensterbank, L.; Malacria, M. Tetrahedron 2006, 62, 3856–3871; (d) DeKorver, K.
A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev.
2010, 110, 5064–5106.
2. Sato, A.; Yorimitsu, H.; Oshima, K. Bull. Korean Chem. Soc. 2010, 31, 570–576.
3. Reimann, E. Curr. Org. Chem. 2009, 4, 353–378. and references cited therein.
4. (a) Kameni, T.; Takagi, N.; Toyota, M.; Honda, T.; Fukumoto, K. Heterocycles
1981, 16, 591–602; (b) Meyers, A. I.; Boes, M.; Dickman, D. A. Angew. Chem., Int.
Ed. 1984, 23, 458–462; (c) Munchhof, M. J.; Meyers, A. I. J. Org. Chem. 1996, 61,
4607–4610; (d) Carillo, L.; Badia, D.; Dominguez, E.; Anakabe, E.; Orsante, I.;
Tellitu, I.; Vicario, J. L. J. Org. Chem. 1999, 64, 1115–1118; (e) Le, T. N.; Gang, S.
19. 2,2,2-Trifluoro-1-(1-(trimethylsilyl)-5,6-dihydrobenzo[d]azocin-3(4H)-yl) ethanone
10:1HNMR(400 MHz,CDCl3)d7.26–7.12(m,4H),6.86(d,J = 1.6 Hz,1H),3.73(td,
J = 13.6 Hz, J = 4.4 Hz, 1H), 3.47 (td, J = 10.4 Hz, J = 2.8 Hz, 1H), 2.80 (t, J = 2.0 Hz,