1966, 1002; (c) F. Langer, K. Puntener, R. Sturmer and P. Knochel,
¨ ¨
Tetrahedron: Asymmetry, 1997, 8, 715; (d) P. Bharathi and
M. Periasamy, Organometallics, 2000, 19, 5511.
7 (a) I. P. Beletskaya, V. V. Afanasiev, M. A. Kazankova and
I. V. Efimova, Org. Lett., 2003, 5, 4309; (b) V. V. Afanasiev,
I. P. Beletskaya, M. A. Kazankova, I. V. Efimova and
M. U. Antipin, Synthesis, 2003, 2835.
8 Y. Gao, G. Wang, L. Chen, P. Xu, Y. Zhao, Y. Zhou and
L.-B. Han, J. Am. Chem. Soc., 2009, 131, 7956.
Scheme
2 Tentative mechanistic cycle for the copper-catalyzed
synthesis of alkynylphosphine derivatives.
9 For Pd-catalyzed cross-coupling reactions towards P-aryl
phosphines, see: (a) S. Pican and A.-C. Gaumont, Chem. Commun.,
2005, 2393; (b) H. Vallette, S. Pican, C. Boudou, J. Levillain,
J.-C. Plaquevent and A.-C. Gaumont, Tetrahedron Lett., 2006, 47,
5191; (c) A.-C. Gaumont, M. B. Hursthouse, S. J. Coles and
J. M. Brown, Chem. Commun., 1999, 63; Towards P-alkenyl
phosphines, see: (d) D. Julienne, J.-F. Lohier, O. Delacroix and
A.-C. Gaumont, J. Org. Chem., 2007, 72, 2247; (e) D. Julienne,
O. Delacroix and A.-C. Gaumont, Phosphorus, Sulfur and Silicon
Relat. Elem., 2009, 184, 846; (f) D. Julienne, O. Delacroix and
A. C. Gaumont, C. R. Chimie, 2010, 13, 1099. For catalytic
hydrophosphinations, see: (g) B. Join, D. Mimeau, O. Delacroix
and A.-C. Gaumont, Chem. Commun., 2006, 3249; (h) D. Mimeau
and A.-C. Gaumont, J. Org. Chem., 2003, 68, 7016.
10 Recent reviews: (a) D. S. Surry and S. L. Buchwald, Chem. Sci.,
2010, 1, 13; (b) F. Monnier and M. Taillefer, Angew. Chem., Int.
Ed., 2009, 48, 6954; (c) F. Monnier and M. Taillefer, Angew.
Chem., Int. Ed., 2008, 47, 3096; (d) G. Evano, N. Blanchard and
M. Toumi, Chem. Rev., 2008, 108, 3054.
11 For phosphines as coupling partners, see: (a) D. Gelman, L. Jiang
and S. L. Buchwald, Org. Lett., 2003, 5, 2315; (b) D. Van Allen and
D. Venkataraman, J. Org. Chem., 2003, 68, 4590; (c) K. Tani,
D. C. Behenna, R. M. McFadden and B. M. Stoltz, Org. Lett.,
2007, 9, 2529.
12 For phosphine oxides or phosphite derivatives as coupling
partners, see: (a) G. Evano, K. Tadiparthi and F. Couty, Chem.
Commun., 2011, 47, 179; (b) N. T. McDougal, J. Streuff,
H. Mukherjee, S. C. Virgil and B. M. Stoltz, Tetrahedron Lett.,
2010, 51, 5550; (c) D. Jiang, Q. Jiang, H. Fu, Y. Jiang and Y. Zhao,
Synthesis, 2008, 3473; (d) Y. Matano, K. Matsumoto, Y. Terasaka,
H. Hotta, Y. Araki, O. Ito, M. Shiro, T. Sasamori, N. Tokitoh and
H. Imahori, Chem. –Eur. J., 2007, 13, 891; (e) C. Huang, X. Tang,
H. Fu, Y. Jiang and Y. Zhao, J. Org. Chem., 2006, 71, 5020;
(f) H. Rao, Y. Jin, H. Fu, Y. Jiang and Y. Zhao, Chem. –Eur. J.,
2006, 12, 3636; (g) T. Ogawa, N. Usuki and N. Ono, J. Chem. Soc.,
Perkin Trans. 1, 1998, 2953.
13 (a) T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto and
K. Sato, J. Am. Chem. Soc., 1990, 112, 5244; (b) review:
A.-C. Gaumont and B. Carboni, Sci. Synth., 2005, 6, 485.
14 Reviews: (a) A. S. Dudnik and V. Gevorgyan, Angew. Chem., Int.
Ed., 2010, 49, 2096; (b) B. Witulski and C. Alayrac, Sci. Synth.,
2006, 24, 905.
then with 1,10-phenanthroline (1 equiv.). The 31P NMR
spectrum revealed the instant formation of a new phosphorus
derivative (dP = À22 ppm), which was attributed to the
copper phosphide species [Ph2P(BH3)Cuphen] based on the
1H and 13C NMR spectra. All attempts to grow crystals from
this complex failed. 1-Bromoalkyne 2a (1.4 equiv.) was
added to this complex at 0 1C and the reaction medium was
subsequently heated at 40 1C. A 31P NMR spectrum registered
after 2 h of heating showed the expected signal corresponding
to alkynylphosphine 3a (dP = 5 ppm). Based on this result,
and by analogy to related catalytic syntheses of N-functionalized
alkynes,20 a tentative mechanism is shown in Scheme 2: (i)
formation of Cu(I) phosphide species 4, (ii) oxidative addition
to 1-bromoalkyne 2, (iii) reductive elimination leading to
cross-coupling product 3 and regeneration of the copper
catalyst.
In conclusion we have developed a new and efficient access
to various alkynylphosphine derivatives, through copper-
catalyzed cross-coupling reaction between alkyl, aryl and
alkylaryl phosphine boranes and various 1-bromoalkynes.
Worthy of note are the mild conditions (20 to 60 1C) required
in this coupling reaction, and the first use of a nucleophilic
phosphorus derivative in the catalytic synthesis of alkynyl-
phosphines. Preliminary mechanistical studies are consistent with
the involvement of a copper phosphide as an intermediate. The
reaction mechanism and the extension of this methodology to the
asymmetric series are currently under investigation.
This work was supported by CNRS and Crunch
´
gion
(interregional organic chemistry network). The )Re
Basse-Normandie* and ERDF funding (ISCE-Chem
&
INTERREG IVa program) are gratefully thanked for financial
support. COST ACTION CM0802 ‘‘PHOSCINET’’ is also
acknowledged for support.
15 H. Brisset, Y. Gourdel, P. Pellon and M. Le Corre, Tetrahedron
Lett., 1993, 34, 4523.
16 (a) M. Wolter, G. Nordmann, G. E. Job and S. L. Buchwald, Org.
Lett., 2002, 4, 973; (b) R. K. Gujadhur, C. G. Bates and
D. Venkataraman, Org. Lett., 2001, 3, 4315.
Notes and references
17 Other copper sources such as CuBr, Cu2O, CuBr2 in combination
with phenanthroline (1 : 1) proved to be less efficient than CuI.
18 For the use of an alkyne as ligand in a Cu-catalyzed cross coupling
reaction, see, for example: D. J. Winternheimer and C. A. Merlic,
Org. Lett., 2010, 12, 2508.
19 (a) G. O. Jones, P. Liu, K. N. Houk and S. L. Buchwald, J. Am.
Chem. Soc., 2010, 132, 6205; (b) J. W. Tye, Z. Weng, R. Giri and
J. F. Hartwig, Angew. Chem., Int. Ed., 2010, 49, 2185;
(c) E. R. Strieter, B. Bhayana and S. L. Buchwald, J. Am. Chem.
Soc., 2009, 131, 78; (d) J. W. Tye, Z. Weng, A. M. Johns,
C. D. Incarvito and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130,
9971.
1 Phosphorus Ligands in Asymmetric Catalysis, ed. A. Bo
Wiley-VCH, Weinheim, 2008.
2 For a recent review, see: A. Kondoh, H. Yorimitsu and K. Oshima,
Chem.–Asian J., 2010, 5, 398.
3 Acetylene Chemistry: Chemistry, Biology, and Materials Science,
ed. F. Diederich, P. J. Stang and R. R. Tykwinski, Wiley-VCH,
Weinheim, 2005.
4 (a) H. Ito, H. Ohmiya and M. Sawamura, Org. Lett., 2010, 12,
4380; (b) A. Ochida, H. Ito and M. Sawamura, J. Am. Chem. Soc.,
2006, 128, 16486.
¨
rner,
5 T. Imamoto, Y. Saitoh, A. Koide, T. Ogura and K. Yoshida,
Angew. Chem., Int. Ed., 2007, 46, 8636.
20 See, for example: C. Laroche, J. Li, M. W. Freyer and
S. M. Kerwin, J. Org. Chem., 2008, 73, 6462.
6 (a) W. E. Davidsohn and M. C. Henry, Chem. Rev., 1967, 67, 73;
(b) C. Charrier, W. Chodkiewicz and P. Cadiot, Bull. Soc. Chim. Fr.,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3239–3241 3241