8 Crystal data for 5ꢁ2toluene:
C
orthorhombic, space group Pbca, a = 13.4491(4), b = 9.6202(3),
42H52B6N8,
M
=
733.78,
c = 31.1212(10) A, U = 4026.6(2) A3, Z = 4, Dc = 1.210 Mg mꢀ3
,
l = 1.54178 A, m(Cu-Ka) = 0.541 mmꢀ1, F(000) = 1560, T = 100(2)
K, R1 = 0.0453 [for 3170 reflections with I > 2s(I)], wR2 = 0.1161
[for all 3402 reflections]. Rint = 0.0741. CCDC 807914.
** Computational energy minimisations for 3 and 5 were carried out
using B3LYP/6-31G*, with the geometry of the species in the crystal
structure as the starting point for the optimisation. All calculations
were performed with the Gaussian03 package using the B3LYP
functional and with 6-31G* basis sets on all atoms.14,15
ww Crystal data for 6: C32H44B6N8, M = 605.61, triclinic, space group
ꢀ
P1, a = 11.9997(8), b = 12.1731(9), c = 14.0679(13) A, a =
94.107(6)1, b = 104.802(5)1, g = 119.494(3)1, U = 1681.0(2) A3,
Z = 2, Dc = 1.196 Mg mꢀ3, l = 1.54178 A, m(Cu-Ka) =
0.540 mmꢀ1, F(000) = 644, T = 100(2) K, R1 = 0.0676 [for 4832
reflections with I > 2s(I)], wR2 = 0.1850 [for all 5585 reflections]. The
crystal was a partial merohedral twin with two domains. Each domain
was indexed independently using the Apex II software and integrated
simultaneously using SAINT. The structure was solved using
‘detwinned’ data and refined against all reflections. This resulted in a
ratio of 0.66 : 0.34 for the two domains. CCDC 807915.
Fig. 4 A view of the molecular structure of compound 6. Hydrogen
atoms have been omitted for clarity and thermal ellipsoids are set at
the 50% probability level. Selected bond distances (A) and angles (deg)
include: B(1)–B(4) 1.722(5), B(2)–B(3) 1.723(5), B(5)–B(6) 1.718(5),
B(1)–N(1) 1.462(5), B(1)–N(2) 1.440(5), B(2)–N(1) 1.474(5), B(2)–N(3)
1.405(5), B(3)–N(2) 1.475(5), B(2)–N(4) 1.405(5), B(4)–N(5) 1.457(5),
B(4)–N(6) 1.451(4).
1 P. Paetzold, Pure Appl. Chem., 1991, 63, 345.
2 B. Thiele, P. Schreyer, U. Englert, P. Paetzold, R. Boese and
B. Wrackmeyer, Chem. Ber., 1991, 124, 2209.
3 V. Gutmann, A. Meller and R. Schlegel, Monatsh. Chem., 1964, 95,
314; A. Meller and H. Marecek, Monatsh. Chem., 1968, 99, 1666;
J. L. Adcock and J. J. Lagowski, J. Organomet. Chem., 1974, 72,
323; J. L. Adcock, L. A. Melcher and J. J. Lagowski, Inorg. Chem.,
1973, 12, 788.
4 B. Thiele, P. Paetzold and U. Englert, Chem. Ber., 1992, 125, 2681.
5 G. Bramham, J. P. H. Charmant, A. J. R. Cook, N. C. Norman,
C. A. Russell and S. Saithong, Chem. Commun., 2007, 4605.
6 (a) M. J. D. Bosnet and W. E. Piers, Can. J. Chem., 2009, 87, 8;
(b) K. E. Krahulic, G. D. Enright, M. Parvez and R. Roesler,
J. Am. Chem. Soc., 2005, 127, 4142; (c) A. Wakamiya, K. Mori,
T. Araki and S. Yamaguchi, J. Am. Chem. Soc., 2009, 131, 10850;
(d) E. R. Abbey, L. N. Zakharov and S. Y. Liu, J. Am. Chem. Soc.,
2010, 132, 16340.
7 R. A. Baber, J. P. H. Charmant, A. J. R. Cook, N. E. Farthing,
M. F. Haddow, N. C. Norman, A. G. Orpen, C. A. Russell and
J. M. Slattery, Dalton Trans., 2005, 3137.
8 M. A. M. Alibadi, A. S. Batsanov, G. Bramham, J. P. H. Charmant,
M. F. Haddow, L. MacKay, S. M. Mansell, J. E. McGrady,
N. C. Norman, A. Roffey and C. A. Russell, Dalton Trans., 2009,
5348.
of 6 was also determined by X-ray crystallography and is
shown in Fig. 4.zww The two B3N2 rings are non-planar and
are arranged in an approximately staggered conformation
about the central B–B bond, the angle between the two BN2
planes, t, being 84.61. All B–B bonds are similar in length and
characteristic of single bonds [B(1)–B(4) 1.722(5), B(2)–B(3)
1.723(5), B(5)–B(6) 1.718(5)].8,10 The non-planarity of the
five-membered rings arises because the B2(NMe2)2 units are
twisted [t = 30.21], but this is significantly less than the
twisting observed in 3 and 5. Compound 6 also constitutes a
new class of borazine and is related to a fulvalene but with
2 fewer electrons; 8 vs. 10.
In summary, we have shown that BN-rich polycyclic
systems, which may be viewed both as new types of borazines
and as isostructural with polycyclic aromatic hydrocarbons,
may be constructed in comparatively few steps from simple
diborane(4) precursors.
9 (a) H. Noth and W. Meister, Z. Naturforsch., Teil B, 1962, 17, 714;
¨
(b) M. J. G. Lesley, N. C. Norman and C. R. Rice, Inorganic
Syntheses, 2004, 34, 1.
10 W. Clegg, M. R. J. Elsegood, F. J. Lawlor, N. C. Norman,
N. L. Pickett, E. G. Robins, A. J. Scott, P. Nguyen, N. J. Taylor
and T. B. Marder, Inorg. Chem., 1998, 37, 5289.
11 See for example: (a) P. P. Power, Chem. Rev., 1999, 99, 3463;
(b) Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie,
R. B. King, H. F. Schaefer, P. v. R. Schleyer and
G. H. Robinson, J. Am. Chem. Soc., 2007, 129, 12412;
We thank the University of Bristol and the EPSRC for
funding, Dr Chris Adams (Bristol) for useful discussions
concerning the electronic structures of these molecules and
Claire McMullin (Bristol) for generating the molecular orbital
pictures associated with this work.
Notes and references
(c) H. Noth, J. Knizek and W. Ponikwar, Eur. J. Inorg. Chem.,
¨
1999, 1931.
z Single crystals of 3–6 were recrystallised from saturated solutions of
an appropriate solvent (see ESIw), mounted in inert oil and transferred
to the cold gas stream of the diffractometer. Structures were solved
using SHELXS and refined using SHELXL.16
y Crystal data for 3ꢁtoluene: C27H40B6N8, M = 541.53, monoclinic,
space group C2/c, a = 27.515(5), b = 12.652(2), c = 8.8516(14) A,
b = 102.852(9)1, U = 3004.2(8) A3, Z = 4, Dc = 1.197 Mg mꢀ3, l =
1.54178 A, m(Cu-Ka) = 0.544 mmꢀ1, F(000) = 1152, T = 100(2) K,
R1 = 0.0502 [for 1616 reflections with I > 2s(I)], wR2 = 0.1351
[for all 2129 reflections], Rint = 0.0672. CCDC 807912.
12 (a) A. L. McCloskey, R. J. Brotherton, J. L. Boone and
H. M. Manasevit, J. Am. Chem. Soc., 1960, 82, 6245;
(b) R. J. Brotherton, in Progress in Boron Chemistry, ed.
H. Steinberg and A. L. McCloskey, Macmillan, New York,
1964ch. 1; (c) H. Noth and W. Meister, Chem. Ber., 1961, 94,
¨
509; (d) T. Ishiyama, M. Murata, T. Akiko and N. Miyaura, Org.
Synth., 2000, 77, 176.
13 N. Iwadate and M. Suginome, J. Am. Chem. Soc., 2010, 132, 2548
and references therein.
z Crystal data for 4ꢁ2DMF: C26H30B2N6O2, M = 480.18, monoclinic,
14 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) P. J. Stevens,
J. F. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem.,
1994, 98, 11623; (c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B,
1988, 37, 785.
space group P21/n, a = 12.8216(7), b = 13.9708(8), c = 14.5010(8) A,
,
b = 104.001(3)1, U = 2520.4(2) A3, Z = 4, Dc = 1.265 Mg mꢀ3
l
= 0.71073 A, m(Mo-Ka) = , F(000) = 1016,
0.082 mmꢀ1
T = 100(2) K, R1 = 0.0569 [for 4239 reflections with I > 2s(I)].
wR2 = 0.2216 [for all 7023 reflections]. Rint = 0.0357. CCDC 807913.
15 Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford CT, 2004.
16 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.
c
3750 Chem. Commun., 2011, 47, 3748–3750
This journal is The Royal Society of Chemistry 2011