There are several reports on CDC processes comp-
rising sp2(CꢀH)/sp3(CꢀH),4d,5c,5i,5k sp2(CꢀH)/sp2-
(CꢀH),4c,5b,5g,5h,5lꢀ5n and sp(CꢀH)/sp(CꢀH)4e couplings
(Scheme 1). However, there are very few reports on
successful sp2(CꢀH)/sp(CꢀH) CDC reactions.6 Herein, we
disclose the first examples of zinc triflate catalyzed CDC
reactions between sp2(CꢀH) of nitrones and sp(CꢀH) of
terminal alkynes in the presence of 3,30,5,50-tetra-tert-
butyldipheno-quinone 37 and dioxygen as oxidants for the
preparation of alkynylated nitrones 5 (Scheme 1). Moreover,
we will show that such nitrones are readily transformed to the
corresponding isoxazoles.
followed by mild oxidation of A to the cross-dehydrogena-
tively coupled R-alkynylated nitrone 5.
Scheme 2. Working Model for the CDC between N-tBu Ni-
trones and Terminal Alkynes
Scheme 1. CꢀC Bond Formation via Cross-Dehydrogenative
Coupling
The reason behind choosing the tBu group as an N-
substituent inthe starting nitrones is3-fold: (a) preliminary
studies revealed that oxidation is fast for N-tBu-substi-
tuted hydroxylamines, (b) oxidation occurs regioselec-
tively,13 and (c) the tBu group is an established acid-
sensitive protecting group. We started our studies by
reacting isopropyl N-tBu nitrone 1a with alkyne 2a
(3 equiv) in the presence of Zn(OTf)2 (20 mol %) and
NEt3 (50 mol %) in DCM at 45 °C. Various organic
oxidants were employed for the initial screenings. No reac-
tion was observed using DDQ (1 equiv), but the 2,2,6,6-
tetramethylpiperidine-N-oxyl radical14 (TEMPO, 2 equiv)
delivered the desired 5a in 74% yield (Table 1, entries 1, 2).
The yield was improved to 84% with the readily available
diquinone 3 as an oxidant (entry 3). Importantly, 3 can be
regenerated from byproduct 4.7 Replacing iPr2NEt with
Et3N gave a slightly lower yield (77%), which was improved
to 83% by stirring the reaction mixture at rt, albeit at the
expense of a longer reaction time (entries 4, 5). Hence, the
optimal oxidant and base in terms of yield and reaction time
were found to be diquinone 3 and iPr2NEt.
CꢀC bond formation via reaction of a metalated term-
inal alkyne8 with an electrophile is a classical approach for
alkynylation. Products obtained are amenable to further
synthetic transformations.9 Transition-metal-catalyzed
addition of alkynes to CdN bonds has been intensively
studied.10,11 Carreira’s Zn(II)-catalyzed alkynylation of
nitrones to propargyl N-hydroxylamines has caught our
attention.11a We envisioned oxidizing propargyl N-
hydroxylamine12 intermediates of type A to the R-alkyny-
lated nitrones 5, while avoiding oxidative homocoupling of
the metalated alkyne (Scheme 2). Hence, the oxidant must
be compatible with the organozinc species. Our proposed
cascade comprises a Zn(OTf)2/NR3 catalyzed nucleophilic
addition of a terminal alkyne to an N-tBu nitrone to A,
We then tested the scope of our CDC under the opti-
mized conditions. The (6-methoxy-2-naphthyl)alkynyl Zn
compound underwent smoothtransformationto5einhigh
(6) (a) Wei, Y.; Zhao, H. Q.; Kan, J.; Su, W. P.; Hong, M. C. J. Am.
Chem. Soc. 2010, 132, 2522. (b) Haro, T. de.; Nevado, C. J. Am. Chem.
Soc. 2010, 132, 1512.
(7) Kharasch, M. S.; Joshi, B. S. J. Org. Chem. 1957, 22, 1439. 3 is
readily prepared by treatment of o,o0-di-tert-butylphenol with O2.(a) De
Sarkar, S.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190. (b)
De Sarkar, S.; Studer, A. Org. Lett. 2010, 12, 1992. (c) De Sarkar, S.;
Studer, A. Angew. Chem., Int. Ed. 2010, 49, 9266.
(13) Under identical conditions using 2.2 equiv of TEMPO isopropyl
N-Bn nitrone gave the desired product in 76% yield along with the
undesired regioisomer formed via oxidation at the benzylic position in
9% yield.
(8) Negishi, E.-I.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
(9) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963.
(10) (a) Li, C.-J. Acc. Chem. Res. 2010, 43, 581. (b) Carreira, E. M.;
(14) Review: Vogler, T.; Studer, A. Synthesis 2008, 845. Other
applications of TEMPO as a mild oxidant in catalysis:Vogler, T; Studer,
A. Org. Lett. 2008, 10, 129. Kirchberg, S.; Vogler, T.; Studer, A. Synlett
2008, 18, 2841. Vogler, T.; Studer, A. Adv. Synth. Catal. 2008, 350, 1963.
Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem., Int. Ed.
2008, 47, 8727. Maji, M. S.; Pfeifer, T.; Studer, A. Angew. Chem., Int. Ed.
€
Frantz, D. E.; Fassler, R.; Tomooka, C. S. Acc. Chem. Res. 2000, 33,
373. (c) Chen, L.; Li, C. J. Adv. Synth. Catal. 2006, 348, 1459. (e) Zani, L.;
Bolm, C. Chem. Commun. 2006, 4263.
€
(11) (a) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc.
€
1999, 121, 11245. (b) Fassler, R.; Frantz, D. E.; Oetiker, J.; Carreira,
€
2008, 47, 9547. Kirchberg, S.; Frohlich, R.; Studer, A. Angew. Chem.,
E. M. Angew. Chem., Int. Ed. 2002, 41, 3054. (c) Topic, D.; Aschwanden,
Int. Ed. 2009, 48, 4235. Maji, M. S.; Studer, A. Synthesis 2009, 2467.
Pouliot, M.; Renaud, P.; Schenk, K.; Studer, A.; Vogler, A. Angew.
Chem., Int. Ed. 2009, 48, 6037. Maji, S. M.; Pfeifer, T.; Studer, A.
€
P.; Fassler, R.; Carreira, E. M. Org. Lett. 2005, 7, 5329. (d) Miura, M.;
Enna, M.; Okuro, K.; Nomura, M. J. Org. Chem. 1995, 60, 4999.
(12) (a) Hamer, J.; Macaluso, A. Chem. Rev. 1964, 64, 473. (b) Cicchi,
S.; Marradi, M.; Goti, A.; Brandi, A. Tetrahedron Lett. 2001, 42, 6503.
(c) Qureshi, A. K.; Sklarz, B. J. Chem. Soc. C 1966, 412. (d) Cicchi, S.;
Corsi, M.; Goti, A. J. Org. Chem. 1999, 64, 7243. (e) Cardona, F.;
Gorini, L.; Goti, A. Lett. Org. Chem. 2006, 3, 118.
€
Chem.;Eur. J. 2010, 16, 5872. Kirchberg, S.; Frohlich, R.; Studer, A.
Angew. Chem., Int. Ed. 2010, 49, 6877. Maji, S. M.; Murarka, S.; Studer,
A. Org. Lett. 2010, 12, 3878. Kirchberg, S.; Tani, S.; Ueda, K.;
Yamaguchi, Y.; Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011, 50,
2387.
Org. Lett., Vol. 13, No. 10, 2011
2747