proposal is supported by the following observations: (1) the
presence of palladium in the reaction mixture is a prerequisite
for the arylthiolation to occur; (2) addition of mesitylene after
pre-formation of the active species increases the yield and
selectivity; (3) in order to observe yields >50% an arylsulfonyl
cyanide to arene ratio >1 : 1.2 is necessary. Furthermore,
we were able to obtain the same products in good yield
(>70%) by replacement of the arylsulfonyl cyanide with
sodium 4-tolylsulfinate in the presence of trifluoroacetic
anhydride. Notably, no reaction is observed without this
anhydride.14
Notes and references
1 (a) T. W. Greene and P. G. M. Wuts, Protective Groups in
Organic Synthesis, Wiley-Interscience, New York, 3rd edn, 1999;
(b) R. J. Cremlyn, An introduction to organosulfur chemistry, John
Wiley and Sons, Chichester, 1996.
2 For selected references: (a) K. P. Borujeni and B. Tamami, Catal.
Commun., 2007, 8, 1191; (b) G. A. Olah, T. Mathew and
G.
K.
S.
Prakash,
Chem.
Commun.,
2001,
1696;
(c) B. M. Choudary, N. S. Chowdari and M. L. Kantam, J. Chem.
Soc., Perkin Trans. 1, 2000, 2689; (d) R. P. Singh, R. M. Kamble,
K. L. Chandra, P. Saravanan and V. K. Singh, Tetrahedron, 2001, 57,
241; (e) S. Repichet, C. Le Roux and J. Dubac, Tetrahedron Lett.,
1999, 40, 9233; (f) B. M. Choudary, N. S. Chowdari, M. L. Kantam
and R. Kannan, Tetrahedron Lett., 1999, 40, 2859; (g) K. Bahrami,
M. M. Khodei and F. Shahbazi, Tetrahedron Lett., 2008, 49, 3931.
3 For selected references see: (a) B. Yao and Y. Zhang, Tetrahedron
Lett., 2008, 49, 5385; (b) A. Alizadeh, M. M. Khodaei and
E. Nazari, Tetrahedron Lett., 2007, 48, 6805.
4 (a) X. Zhao, E. Dimitrijevic and V. M. Dong, J. Am. Chem. Soc.,
2009, 131, 3466; (b) B. P. Bandgar, S. V. Bettigeri and J. Phopase,
Org. Lett., 2004, 6, 2105; (c) J. M. Baskin and Z. Wang, Org. Lett.,
2002, 4, 4423.
5 (a) T. Nakazawa, J. Xu, T. Nishikawa, T. Oda, A. Fujita, K. Ukai,
R. E. P. Mangindaan, H. Rotinsulu, H. Kobayashi and
M. Namikoshi, J. Nat. Prod., 2007, 70, 439; (b) T. Oda,
T. Fujiwara, H. Liu, K. Ukai, R. E. P. Mangindaan,
M. Mochizuki and M. Namikoshi, Mar. Drugs, 2006, 4, 15;
(c) H. Liu, T. Fujiwara, T. Nishikawa, Y. Mishima, H. Nagai,
T. Shida, K. Tachibana, H. Kobayashi, R. E. P. Mangindaane and
M. Namikoshia, Tetrahedron, 2005, 61, 8611.
After having identified suitable conditions for the model
reaction (Table 1, entry 12), we tested a number of arenes with
two arylsulfonyl cyanides to explore the scope of this new
methodology (Table 2). Arylthiolation of mesitylene with
TsCN yielded the corresponding diaryl sulfide in 72% isolated
yield (Table 2, entry 1). A similar result is obtained with
pentamethylbenzene (Table 2, entry 2). More simple substrates
such as anisole and m-xylene underwent smooth reaction to
afford the diaryl sulfides in 61% and 57% yield, respectively
(Table 2, entries 9 and 3). It is interesting to note that the ortho
to para selectivity in both cases is found to be excellent.
However, arylthiolation of 3,5-dimethylanisole furnished a
mixture of ortho- and para-arylthiolated products in a 1 : 3
ratio (Table 2, entry 4). Substituted diaryl sulfides (from
3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene) were also
readily synthesized employing the present conditions (Table 2,
entries 5 and 6). Moreover, 1,3-dimethoxybenzene as well as
3-methylanisole are arylthiolated in 39% and 66% yield
(Table 2, entries 7 and 8). From a synthetic point of view it
is interesting to note that aryl bromides can be used as
substrates for the arylthiolation reaction. Thus, arylthiolation
of 5-bromo-1,3-dimethoxybenzene and 3-bromoanisole with
TsCN gave a moderate yield of the corresponding brominated
diaryl sulfide (Table 2, entries 10 and 11). Additionally,
9,9-dimethylxanthene, a heterocyclic arene was arylthiolated
in 57% yield (Table 2, entry 12). Finally, benzenesulfonyl
cyanide was utilized in place of TsCN.15 Consequently,
arylthiolation of simple arenes such as mesitylene and anisole
with benzenesulfonyl cyanide afforded the respective diaryl
sulfides in moderate yield (Table 2, entries 13 and 14).
In summary, a novel C–H functionalization methodology
for the synthesis of diaryl sulfides from arenes has been
developed. This palladium-catalyzed reaction utilizes aryl-
sulfonyl cyanide as sulfur source, which is the key for the
success of the present strategy. Different mono- and
diarylthiolations proceed under mild conditions with moderate
to excellent chemo- and regioselectivity.
6 Y. Huang, S.-A. Bae, Z. Zhu, N. Guo, B. L. Roth and M. Laruelle,
J. Med. Chem., 2005, 48, 2559.
7 R. L. Beard, D. F. Colon, T. K. Song, P. J. A. Davies, D. M. Kochhar
and R. A. S. Chandraratna, J. Med. Chem., 1996, 39, 3556.
8 For the thermal reaction of arenes with sulfur see: (a) H. B. Glass
and E. E. Reid, J. Am. Chem. Soc., 1929, 51, 3428; in the presence
of AlCl3 see: (b) G. Dougherty and P. D. Hammond, J. Am. Chem.
Soc., 1935, 57, 117; for condensations of organometallic com-
pounds with chlorophenyl sulfide: (c) M. Chua and H. Hoyer, Z.
Naturforsch., B, 1965, 20, 416; for base-mediated reactions of
chloroarenes with thiophenols see: (d) J. R. Campbell, J. Org.
Chem., 1964, 29, 1830; (e) I. Baxter, A. Ben-Haida,
H. M. Colquhoun, P. Hodge, F. H. Kohnke and D. J. Williams,
Chem.–Eur. J., 2000, 6, 4285.
9 (a) J. M. Khurana, V. Sharma and S. A. Chacko, Tetrahedron,
2007, 63, 966; (b) Y. Handa, J. Inanaga and M. Yamaguchi,
J. Chem. Soc., Chem. Commun., 1989, 298.
10 For a review see: (a) T. Kondo and T.-A. Mitsudo, Chem. Rev.,
2000, 100, 3205; for selected recent references: (b) G. Y. Li, J. Org.
Chem., 2002, 67, 3643; (c) M. Murata and S. L. Buchwald, Tetra-
hedron, 2004, 60, 7397; (d) F. Gendre, M. Yang and P. Diaz, Org.
Lett., 2005, 7, 2719; (e) M. A. Fernandez-Rodrıguez, Q. Shen and
J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 2180;
(f) N. Taniguchi, J. Org. Chem., 2007, 72, 1241.
11 (a) P. Anbarasan, H. Neumann and M. Beller, Angew. Chem., Int.
Ed., 2010, 49, 2219; (b) P. Anbarasan, H. Neumann and M. Beller,
Chem.–Eur. J., 2010, 16, 4725.
12 L. R. Reddy, B. Hu, M. Prashad and K. Prasad, Angew. Chem.,
Int. Ed., 2009, 48, 172.
13 Here formation of chloromesitylene was observed as a major product.
14 (a) L. H. S. Smith, S. C. Coote, H. F. Sneddon and D. J. Procter,
Angew. Chem., Int. Ed., 2010, 49, 5832; (b) S. K. Bur and
A. Padwa, Chem. Rev., 2004, 104, 2401.
This work has been funded by the Alexander-von-
Humboldt-Stiftung, the BMBF, and the DFG (Leibniz
Prize). We thank Mrs S. Leiminger, Drs W. Baumann,
C. Fischer, and Mrs S. Buchholz (all LIKAT) for analytical
support.
15 For the synthesis and application of arylsulfonyl cyanides see for
example: Z. P. Demko and K. B. Sharpless, Angew. Chem., Int.
Ed., 2002, 41, 2110.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3233–3235 3235