comparison to the traditional methods of extending p-conjugation of
the sensitizers toward lower energy gap with high absorptivity, the
concept of metal ion complexation in situ turns out to be facile, with
successful DSSC enhancement. In addition to the energy conversion,
the metal-binding concept may be extended and exploited in metal
ion recognition. Accordingly, a DSSC dye can be designed to possess
a recognition unit, such that the current output of the DSSC can be
used as a signal readout.35 Relevant applications are thus quite
promising due to the versatility and feasibility in design and synthesis,
respectively. Further intensive work on this issue is currently in
progress.
Notes and references
1 N. Robertson, Angew. Chem., Int. Ed., 2006, 45, 2338.
2 L. M. Goncalves, V. d. Z. Bermudez, H. A. Ribeiro and
A. M. Mendes, Energy Environ. Sci., 2008, 1, 655.
Fig. 5 The film absorption spectra of Alkol and Alkol complexed by
various types of metal ions on 6 mm TiO2.
€
3 M. Gratzel, Acc. Chem. Res., 2009, 42, 1788.
4 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker,
€
E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am.
Chem. Soc., 1993, 115, 6382.
Table 3 Photovoltaic data of Alko1 complexed with Cd(II) and Hg(II)a
5 M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin,
R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa,
V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and
Device
Jsc/mA cmꢁ2
Voc/mV
FF
h (%)
€
M. Gratzel, J. Am. Chem. Soc., 2001, 123, 1613.
6 C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei,
E
F
11.94
12.25
643
627
0.65
0.67
4.99
5.15
€
C. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Gratzel, C.-G. Wu,
S. M. Zakeeruddin and M. Gratzel, ACS Nano, 2009, 3, 3103.
7 T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli,
€
H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Gratzel,
J. Am. Chem. Soc., 2009, 131, 5930.
a
The concentration of the dye was maintained at 3 ꢂ 10ꢁ4 M in tert-
butanol/THF (1/1) solution with 1 mM deoxycholic acid (DCA) as
a coadsorbate. Performances of DSSCs were measured with 0.16 cm2
working area.
€
8 B.-S. Chen, K. Chen, Y.-H. Hong, W.-H. Liu, T.-H. Li, C.-H. Lai,
P.-T. Chou, Y. Chi and G.-H. Lee, Chem. Commun., 2009, 5844.
9 K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu and
P.-T. Chou, Chem. Commun., 2010, 46, 5124.
10 B. Liu, W. Zhu, Q. Zhang, W. Wu, M. Xu, Z. Ning, Y. Xie and
H. Tian, Chem. Commun., 2009, 1766.
€
11 A. Mishra, M. K. R. Fischer and P. Bauerle, Angew. Chem., Int. Ed.,
2009, 48, 2474.
12 S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee,
W. Lee, J. Park, K. Kim, N. G. Park and C. Kim, Chem. Commun.,
2007, 4887.
mixed with saturated ZnI2 in methanol solvent. After stirring for
2 hours at room temperature, the reaction mixture was then poured
into water to obtain dark-brown solid Zn(II)–Alko1 (see Fig. S3† for
1H-NMR measurement). We then tested this as-prepared Zn(II)–
Alko1 for DSSC performance. Under similar condition, i.e.
employing 0.6 M BMII, 0.1 M LiI, 0.05 M I2, 0.1 M guanidinium
thiocyanate (GNCS) as electrolytes, this sequential metal-binding
method gives lower current density compared with the above in situ
complexation by the ZnI2 method. We believe that less uptake of
Zn(II)–Alko1 in this sequential metal-binding method may play
a major role. This is due to the fact that free Alko1 in solution
possesses dual binding sites for the metal ion. In addition to the
2,20-bithiazole moiety allowing the complexation with Zn(II), the
carboxylic acid group is also capable of binding Zn(II). Since
the carboxylic acid acts as a main functional group for the TiO2
binding, the reduction of free carboxylic acid sites hence decreases the
Zn(II)–Alko1 uptake. In this study, we observed a reduction of ꢀ30%
of the Zn(II)–Alko1 dye adsorption in the sequential method
(cf. Alko1 dye on TiO2, followed by Zn(II) complexation).
13 S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet,
ꢀ
P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura,
S. Uchida and M. Gratzel, Adv. Mater., 2006, 18, 1202.
€
14 T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, J. Am. Chem.
Soc., 2004, 126, 12218.
15 D.-Y. Chen, Y.-Y. Hsu, H.-C. Hsu, B.-S. Chen, Y.-T. Lee, H. Fu,
M.-W. Chung, S.-H. Liu, H.-C. Chen, Y. Chi and P.-T. Chou,
Chem. Commun., 2010, 46, 5256.
16 H. Im, S. Kim, C. Park, S.-H. Jang, C.-J. Kim, K. Kim, N.-G. Park
and C. Kim, Chem. Commun., 2010, 46, 1335.
17 C. Teng, X. Yang, C. Yang, S. Li, M. Cheng, A. Hagfeldt and L. Sun,
J. Phys. Chem. C, 2010, 114, 9101.
18 Y. Liang, B. Peng, J. Liang, Z. Tao and J. Chen, Org. Lett., 2010, 12,
1204.
19 W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang,
C. Pan and P. Wang, Chem. Mater., 2010, 22, 1915.
20 T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau and
€
M. Gratzel, Angew. Chem., Int. Ed., 2010, 49, 6646.
21 X.-F. Wang, H. Tamiaki, L. Wang, N. Tamai, O. Kitao, H. Zhou and
S. Sasaki, Langmuir, 2010, 26, 6320.
Conclusion
In summary, the bidentate 2,20-bithiazole moiety was strategically
applied as a bridging unit. The resulting new donor–acceptor dye,
Alko1, was then applied in an attempt to prove the concept of metal
complexation enhancing the performance of DSSCs. Upon com-
plexing with ZnI2, the Zn(II)–Alko1 complex achieves higher molar
absorptivity, accompanied by a red-shifted absorption peak,
increasing the performance of DSSCs by ꢀ23% (cf. Alko1). In
22 K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga,
K. Sayama and H. Arakawa, New J. Chem., 2003, 27, 783.
23 S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci,
€
F. DeAngelis, D. DiCenso, M. K. Nazeeruddin and M. Gratzel,
J. Am. Chem. Soc., 2006, 128, 16701.
24 K. R. Justin Thomas, Y.-C. Hsu, J. T. Lin, K.-M. Lee, K.-C. Ho, C.-
H. Lai, Y.-M. Cheng and P.-T. Chou, Chem. Mater., 2008, 20, 1830.
25 Z.-S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada and A. Shinpo,
Adv. Mater., 2007, 19, 1138.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 4090–4094 | 4093