K. Pérez-Labrada et al. / Tetrahedron Letters 52 (2011) 1635–1638
1637
Berthiol, F.; Matsubara, R.; Kawai, N.; Kobayashi, S. Angew. Chem., Int. Ed. 2007,
46, 7803–7805; (g) Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292–
293; (h) Jia, Y. X.; Zhong, J.; Zhu, S. F.; Zhang, C. M.; Zhou, Q. L. Angew. Chem., Int.
Ed. 2007, 46, 5565–5567.
10. (a) Avena, C. R.; Hongquiang, L.; Vijaya, R. P.; Vederas, J. C. J. Am. Chem. Soc.
2010, 132, 462–463; (b) Ayida, B. K.; Simonsen, K. B.; Vourloumis, D.; Hermann,
T. Bioorg. Med. Chem. Lett. 2005, 15, 2457–2460; (c) Sausker, J. B.; Zhang, Y.;
Conolly, T. P.; Lam, S. K.; Bronson, J. J.; Pucci, M. J.; Yang, H.; Ueda, Y. Bioorg.
Med. Chem. Lett. 2006, 16, 3545–3549; (d) Mori, T.; Tohmiya, H.; Satouchi, Y.;
Higashibayashi, S.; Hashimoto, K.; Nakata, M. Tetrahedron Lett. 2005, 46, 6423–
6427; (e) Palmer, D. E.; Pattaroni, C.; Numani, K.; Chadha, R. K.; Goodman, M.;
Wakamiya, T.; Fukase, K.; Horimoto, S.; Kitazawa, M.; Fujita, H.; Kubo, A.;
Shiba, T. J. Am. Chem. Soc. 1992, 114, 5634–5642.
11. (a) Dömling, A. Chem. Rev. 2006, 106, 17–89; (b) Dömling, A.; Ugi, I. Angew.
Chem., Int. Ed. 2000, 39, 3168–3210.
12. (a) Akritopoulou-Zanze, I.; Djuric, S. W. Heterocycles 2007, 73, 125–147; (b)
Marcaccini, S.; Torroba, T. In Multicomponent Reactions; Zhu, J., Bienaymé, H.,
Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp 33–75. Chapter 2.
13. Du, J.; Watanabe, K. A. Synth. Commun. 2004, 34, 1925–1930.
Figure 1. Single-crystal X-ray analysis of 1a. Hydrogen atoms were eliminated for
clarity.
14. Microwave reactions were conducted using a CEM Discover Synthesis™ Unit
15. (a) Tye, H.; Whittaker, M. Org. Biomol. Chem. 2004, 2, 813–815; (b) Zhang, W.
Chem. Rev. 2004, 104, 2531–2556.
The structures of alldehydroalanine derivatives were determined
by spectroscopic data, and the structure of product 1a was further
confirmed through single-crystal X-ray analysis (Fig. 1).
The data collected in Table 1 convincingly show that various
dehydroalanines, containing diverse reactive functionalities, were
useful for further transformations and could be prepared using this
two-step protocol.
In closing, we have developed a protocol for the preparation of
several dehydroalanines, using a programmed combination of a
Ugi reaction and a subsequent elimination process. This two-step
synthetic route allowed the construction of a variety of dehydro-
alanine derivatives modified with synthetically useful functional
groups from readily accessible starting materials. Currently, we
are examining other leaving groups along with further transforma-
tions of the dehydroalanine adducts, and the publication of these
results is forthcoming.
16. General procedure for the Ugi four-component reaction. In a 100 mL round
bottom flask the corresponding amine (1 mol) (only when amine
hydrochloride was used, 1 mmol of Et3Nwas added), the 2-
benzoylacetaldehyde (1 mol), the corresponding carboxylic acid (1 mol) and
the tert-butyl isocyanide (1 mol) were dissolved in 3 ml of MeOH and stirred at
room temperature. Then the flask was connected to a condenser and placed
into the microwave cavity under an argon atmosphere and the reaction
mixture was irradiated with 50 W for 10 min at 50 °C and then allowed to cool
to room temperature. The reaction solvent was evaporated and the crude
product was purified by silica gel flash column chromatography.
General procedure for the elimination reaction. To
a solution of the
corresponding Ugi derivative (1.3 mmol) in benzene (10 mL) an aqueous
solution of KOH (50%, 10 mL) was added, followed by Bu4NI (0.39 mmol). The
reaction mixture was stirred at room temperature and monitored by TLC.
When the starting material was totally consumed, the organic layer was
diluted with dichloromethane (10 mL) and washed with water (5 Â 10 mL),
dried over anhydrous Na2SO4, filtered, and concentrated under reduced
pressure. The residue was purified by flash chromatography to afford the
corresponding dehydroalanine in good yields.
Selected spectral data: Dehydroalanine (1a): Yield 94% as white crystals; mp
97–98 °C, Rf = 0.32 (n-hexane/ethyl acetate 2:1); 1H NMR (CDCl3/TMS,
300 MHz) d: 1.19 (s, 9H), 2.06 (s, 3H), 4.93 (s, 2H), 5.46 (s, 1H, J = 5.2 Hz),
5.69 (s, 1H), 6.35 (s, 1H), 7.17 (td, 1H, J = 7.7, 1.7 Hz), 7.29 (t, 1H, J = 7.5 Hz),
7.43 (dd, 1H, J = 7.7, 1.7 Hz), 7.56 (dd, 1H, J = 8.3/1.4 Hz); 13C NMR (CDCl3,
75.5 MHz): d 22.1, 28.2, 51.4, 122.4, 124.5, 128.0, 129.7, 132.0, 133.0, 135.9,
Acknowledgements
Financial support from the CONACYT (No. 82643) is gratefully
acknowledged. We also thank R. Patiño, A. Peña, E. Huerta E. Gar-
cía-Rios, L. Velasco, and J. Pérez for technical support. K.P.L. was
a ‘‘Red de Macrouniversidades de América Latina y el Caribe’’ grad-
uate scholarship holder and EPM is a DGAPA-UNAM postgraduate
scholarship holder.
143.4, 162.1, 170.6; FTIR (KBr, cmÀ1
) mmax: 3403, 3331, 2969, 1671, 1625, 1389;
MS (EI) m/z: 353 (M+H); HRMS m/z calcd for C16H22BrN2O2 [M+H] 353.0865,
found: 353.0872. Dehydroalanine (1b): Yield 96% as a clear oil; Rf = 0.45 (n-
hexane/ethyl acetate 1:1); 1H NMR (CDCl3/TMS, 300 MHz) d: 1.53 (s, 9H), 4.27
(s, 2H), 4.66 (d, 1H, J = 1.5 Hz), 5.02 (s, 2H), 5.75 (d, 1H, J = 1.5 Hz), 6.96 (dd, 1H,
J = 7.7, 1.4 Hz), 7.13 (td, 1H, J = 7.5, 1.6 Hz), 7.25 (td, 1H, J = 7.2, 1.2 Hz), 7.58
(dd, 1H, J = 7.8, 1.2 Hz); 13C NMR (CDCl3, 75.5 MHz): d 27.6, 47.0, 47.1, 58.3,
104.0, 122.5, 126.7, 127.7, 128.9, 133.0, 133.3, 137.0, 158.5, 163.3; FTIR (KBr,
References and notes
cmÀ1
) mmax: 3346, 3063, 1687, 1612; MS (EI) m/z: 351 (MÀ18); HRMS m/z calcd
for C16H22BrN2O3 [M+H] 369.0814, found: 369.0829. Dehydroalanine (1c):
Yield 95% as a clear oil; Rf = 0.32 (n-hexane/EtOAc, 1:1); 1H NMR (CDCl3/TMS,
300 MHz) d: 1.13 (s, 9H), 3.61 (s, 2H), 3.85 (s, 3H), 3.87 (s, 3H), 4.92 (s, 2H), 5.37
(s, 1H), 5.53 (s, 1H), 6.39 (s, 1H), 6.77 (m, 2H), 6.85 (d, 1H, J = 1.5 Hz), 7.16 (td,
1H, J = 7.8, 1.8 Hz), 7.26 (td, 1H, J = 7.5, 1.2 Hz), 7.40 (dd, 1H, J = 7.7, 1.7 Hz),
7.54 (dd, 1H, J = 7.7, 1.4 Hz); 13C NMR (CDCl3, 75.5 MHz): d 28.1,40.4, 51.3, 51.5,
55.8, 111.2, 112.1, 121.2, 123.6, 124.6, 126.9, 127.9, 129.6, 131.8, 133.0, 135.8,
1. Allgaier, H.; Jung, G.; Werner, R. G.; Schneider, U.; Zahner, H. Angew. Chem., Int.
Ed. Engl. 1985, 24, 1051–1053.
2. Namikoshi, M.; Sivonen, K.; Evans, W. R.; Carmichael, W. W.; Rouhiainen, L.;
Luukkainen, R.; Rinehart, K. L. Chem. Res. Toxicol. 1992, 5, 661–666. and
references therein.
3. (a) Gross, E.; Morell, J. J. Am. Chem. Soc. 1967, 89, 2791–2792; (b) Jack, R. W.;
Jung, G. Curr. Opin. Chem. Biol. 2000, 4, 310–317.
142.7, 148.1, 149.0, 161.9, 171.4; FTIR (KBr, cmÀ1
) mmax: 3352.45, 3061.24,
4. Anderson, B.; Hodgkin, D. C.; Viswamitra, M. A. Nature 1970, 225, 233–235.
5. (a) Sasaki, T.; Otani, T.; Matsumoto, H.; Unemi, N.; Hamada, M.; Takeuchi, T.;
Hori, M. J. Antibiot. 1998, 8, 715–721; (b) Leet, J. E.; Li, W.; Ax, H. A.; Matson, J.
A.; Huang, S.; Huang, R.; Cantone, J. L.; Drexler, D.; Dalterio, R. A.; Lam, K. S. J.
Antibiot. 2003, 56, 232–242.
2966.55; 2934.26, 1671.98, 1625.95, 1514.87, 1456.65, 1263.76, 1234.96; MS
(EI) m/z: 490 (M+H); HRMS m/z calcd for C24H30BrN2O4 [M+H] 489.1389,
found: 489.1378. Dehydroalanine (1d): Yield 93% as white crystals; mp 130–
131 °C; Rf = 0.29 (n-hexane/EtOAc, 2:1); 1H NMR (CDCl3, 300 MHz) d: 1.25 (s,
9H), 2.04 (s, 3H) 4.84 (s, 2H), 5.44 (s, 1H), 5.70 (s, 1H), 5.97 (s, 2H), 6.36 (s,1H),
6.96 (s, 1H), 6.99 (s, 1H); 13C NMR (CDCl3, 75.5 MHz) d: 22.2, 28.3 51.1, 51.4,
102.0, 111.3, 112.7, 115.3, 122.7, 129.1, 143.2, 147.8, 148.3, 162.1, 170.7; FTIR
6. (a) Parkhurst, J. R.; Hodgins, D. S. Arch. Biochem. Biophys. 1972, 152, 597–605;
(b) Wickner, R. B. J. Biol. Chem. 1969, 244, 6550–6552.
(KBr, cmÀ1
HRMS m/z calcd for
)
m
max: 3316, 2973, 1669, 1619, 1475, 1231; MS (EI) m/z: 397 (M+H);
17H22BrN2O4 [M+H] 397.0763, found: 397.0756.
7. (a) Xiang, Z.; Luo, T.; Lu, K.; Cui, J.; Shi, X.; Fathi, R.; Chen, J.; Yang, Z. Org. Lett.
2004, 6, 3155–3158; (b) Wu, X. Y.; Nilsson, P.; Larhed, M. J. Org. Chem. 2005, 70,
346–349; (c) Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2000, 122,
7843–7844; (d) Taniguchi, T.; Iwasaki, K.; Uchiyama, M.; Tamura, O.; Ishibashi,
H. Org. Lett. 2005, 7, 4389–4390; (e) Taniguchi, T.; Tanabe, G.; Muraoka, O.;
Ishibashi, H. Org. Lett. 2008, 10, 197–199; (f) Movassaghi, M.; Hill, M. D.;
Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096–10097.
8. (a) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455–3460; (b) Naidu, B. N.;
Sorenson, M. E.; Connolly, T. P.; Ueda, Y. J. Org. Chem. 2003, 68, 10098–10102.
9. (a) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973–986; (b)
Matsubara, R.; Kobayashi, S. Acc. Chem. Res. 2008, 41, 292–301; (c) Matsubara,
R.; Nakamura, Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2004, 43, 1679–1681; (d)
Kiyohara, H.; Matsubara, R.; Kobayashi, S. Org. Lett. 2006, 8, 5333–5335; (e)
Matsubara, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 7993–7995; (f)
C
Dehydroalanine (1e): Yield 96% as white crystals; mp 119–120 °C, Rf = 0.34
(n-hexane/EtOAc, 2:3); 1H NMR (CDCl3/TMS, 300 MHz) d:1.32 (s, 9H), 2.03 (s,
3H), 2.85 (t, 2H, J = 7.7 Hz), 3.72 (m, 2H), 3.85 (s, 3H), 3.87 (s, 3H), 5.37 (s, 1H),
5.78 (s, 1H), 6.38 (s, 1H), 6.7 (m, 3H); 13C NMR (CDCl3, 75.5 MHz) d: 22.2, 28.4,
33.0, 48.8, 51.5, 55.8, 111.4, 111.8, 120.5, 121.9, 130.5, 143.0, 147.7, 149.0,
162.2, 170.6; IR (KBr, cmÀ1
) mmax: 3338, 2964, 2934, 1664, 1623, 1516, 1452,
1396.09; MS (EI) m/z: 348 (M+H); HRMS m/z calcd for C19H28N2O4 [M+H]
348.2049, found: 348.2047. Dehydroalanine (1f): Yield 97% as white crystals;
mp 98–99 °C, Rf = 0.28 (n-hexane/EtOAc, 2:1); 1H NMR (CDCl3/TMS, 300 MHz)
d: 1.45 (s, 9H), 2.81 (m, 2H), 3.82 (s, 3H), 3.84 (s, 3H), 3.89 (m, 2H), 4.04 (s, 2H),
4.91 (d, 1H, J = 1.2 Hz), 5.83 (d, 1H, J = 1.2 Hz), 6.75 (m, 3H); 13C NMR (CDCl3,
75.5 MHz) d: 27.5, 31.4, 44.2, 46.8, 55.8, 58.0, 101.9, 111.2, 111.8, 120.5, 130.3,