R.R. Reis et al. / European Journal of Medicinal Chemistry 46 (2011) 1448e1452
1451
121.8; 121.6; 121.0; 120.7; 119.6; 102.8; 102.3; 55.8 ppm. ESI-MS: m/z
[M ꢀ H]ꢀ: 347.2.
calculated effective dose that induced lysis on 50% that of the
Triton X-100.
4.1.1.5. 2-(Benzo[d]thiazol-2-yl)-8-chloro-2H-pyrazolo[4,3-c]quino-
4.4. Molecular modeling
lin-3(5H)-one (3e). Yield: 68%; m.p. 309e310 ꢁC. IR (KBr,
n )
cmꢀ1
3092 (NeH); 1693 (C]O); 1622 (C]N). 1H NMR (DMSO-d6,
300.00 MHz): 13.30 (s, 1H, NeH); 8.90 (s, 1H, H4); 8.25 (d, 1H,
J ¼ 2.7 Hz, H9); 8.04 (d,1H, J ¼ 7.8 Hz, H4’ or H7’); 7.89 (d,1H, J ¼ 8.1 Hz,
Molecular modeling was performed using Osiris programs.
Structures were minimized and the equilibrium geometry was
obtained in vacuum using a semi-empirical AM1 module. In
order to evaluate the electronic properties of the AM1 minimal
energy conformations, they were submitted to a single-point ab
initio calculation using Hartree-Fock method with a 6-31G**
basis set implemented in the programa. The electronic proper-
ties (HOMO and LUMO energy, dipole moment and lipophilicity-
cLogP) were calculated for all compounds. Hydrogen bond
acceptor and donor, molecular weight and the theoretical
toxicity properties were calculated in the Osiris Property
d
0
0
H7 orH4 ’);7.79e7.78 (m, 2H, H6 and H7); 7.49(ddd,1H, J ¼ 7.2, 7.2 and
0
0
0
0
1.2 Hz, H5 orH6 ); 7.35 (ddd,1H, J ¼ 8.1, 8.1 and 1.2 Hz, H6 or H5 ) ppm.
13C NMR (DMSO-d6, 75.0 MHz): 162.0; 155.3; 149.6; 146.4; 141.2;
136.3; 132.3; 131.3; 127.3; 126.4; 124.0; 122.9; 122.0; 121.4; 120.3;
118.7; 103.6 ppm. ESI-MS: m/z [M ꢀ H]ꢀ: 351.2.
4.1.1.6. 2-(Benzo[d]thiazol-2-yl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-
one (3f). Yield: 70%; m.p. 283e284 ꢁC. IR (KBr, cmꢀ1) 3053 (NeH);
n
1693 (C]O); 1623 (C]N). 1H NMR (DMSO-d6, 300.00 MHz):
d
13.26 (s,1H, NeH); 8.95 (s,1H, H4); 8.31 (d,1H, J ¼ 7.8 Hz, H6); 8.05
0
0
0
0
(d, 1H, J ¼ 7.8 Hz, H4 or H7 ); 7.91 (d, 1H, J ¼ 7.5 Hz, H7 or H4 );
7.77e7.74 (m, 2H, H8 and H9); 7.67e7.61 (m, 1H, H7); 7.49 (ddd, 1H,
0
0
J ¼ 8.4, 8.4 and 1.5 Hz, H5 or H6 ); 7.35 (ddd, 1H, J ¼ 8.4, 8.4 and
Acknowledgements
1.4 Hz, H6 or H5 ) ppm. 13C NMR (DMSO-d6, 75.0 MHz): 161.6;
154.8; 149.3; 145.3; 141.4; 135.0; 132.1; 131.3; 131.1; 126.3; 123.9;
122.4; 121.7; 121.2; 119.8; 103.27 ppm. ESI-MS: m/z [M ꢀ H]ꢀ: 317.2.
0
0
The authors thank FAPERJ, CAPES and UFF for financial
support. Fellowships granted to R.R.R by PIBIC-CNPq and to
M.C.B.V.S., V.F.F., C.P., L.V.C., M.O.M., H.C.C. and C.R.R. by CNPq
(Brazil).
4.1.1.7. 2-(Benzo[d]thiazol-2-yl)-8-nitro-2H-pyrazolo[4,3-c]quinolin-
3(5H)-one (3g). Yield: 67%; m.p. >360 ꢁC. IR (KBr,
n
cmꢀ1) 3094
(NeH); 1692 (C]O); 1624 (C]N).1H NMR (DMSO-d6, 300.00 MHz):
d
13.30 (s,1H, NeH); 9.04 (s,1H, H4); 8.97 (d,1H, J ¼ 2.4 Hz, H9); 8.51
References
0
(dd,1H, J ¼ 9.0 and 2.4 Hz, H7); 8.06 (d,1H, J ¼ 8.1 Hz, H4’ or H7 ); 7.93
[1] I. Caleta, M. Kralj, M. Marjanovic, B. Bertosa, S. Tomic, G. Pavilovic, K. Pavelic,
G. Karminski-Zamola, J. Med. Chem. 52 (2009) 1744e1756.
[3] A. Rana, N. Siddiqui, S.A. Khan, Indian J. Pharm. Sci. 69 (2007) 10e17.
[4] M. Ban, H. Tagushi, T. Katsushima, M. Takahashi, K. Shinoda, A. Watanabe,
T. Tominaga, Bioorg. Med. Chem. 6 (1998) 1069e1076.
0
0
(d,1H, J ¼ 9.0 Hz, H6); 7.92 (d,1H, J ¼ 7.8 Hz, H7 or H4 ); 7.50 (ddd,1H,
0
0
J ¼ 8.1, 7.2, and 1.5 Hz, H5 or H6 ); 7.37 (ddd,1H, J ¼ 8.1, 7.2 and 1.3 Hz,
H6 or H5 ) ppm. 13C NMR (DMSO-d6, 75.0 MHz): 162.0; 155.3; 149.6;
146.4; 141.2; 136.3; 132.3; 131.3; 127.3; 126.4; 124.0; 122.9; 122.0;
121.4; 120.3; 118.7; 103.6 ppm. ESI-MS: m/z [M ꢀ H]ꢀ: 362.2.
0
0
[5] K. Oketani, N. Nagakura, K. Harada, T. Inoue, Eur. J. Pharm. 422 (2001)
209e216.
[6] M. Yoshida, N. Hayakawa, N. Hayashi, T. Agatsuma, Y. Oda, F. Tanzawa, S. Iwasaki,
K. Koyama, H. Furukawa, S. Kurakata, Bioorg. Med. Chem. Lett. 15 (2005)
3328e3332.
[7] S.M. Westway, M. Thompson, H.K. Rami, G. Stemp, L.S. Trouw, D.J. Mitchell,
J.T. Seal, S.J. Medhurst, S.C. Lappin, J. Biggs, J. Wright, S. Arpino, J.C. Jerman,
J.E. Cryan, V. Holland, K.Y. Winborn, T. Coleman, A.J. Stevens, J.B. Davis,
M.J. Gunthorpe, Bioorg. Med. Chem. Lett. 18 (2008) 5609e5613.
[8] V. Sharma, K.V. Sharma, Eur. J. Chem. 6 (2009) 348e356.
[9] I. Sigmundová, P. Zahradnik, P. Magdolen, H. Bujdakova, Arkivoc 8 (2008)
183e192.
[10] K.P. Bhusari, P.B. Khedekar, S.N. Umathe, R.H. Bahekar, R.R. Rao, Indian
J. Heterocycl. Chem. 9 (2000) 275e278.
[11] F. Delmas, A. Avellaneda, C.D. Giorgio, M. Robin, E.D. Clercq, P. Timon-David,
J.P. Galy, Eur. J. Med. Chem. 39 (2004) 685e690.
[12] P. Jimonet, A. Francois, M. Barreau, J.C. Blanchard, A. Boirean, Indian J. Med.
Chem. 42 (1991) 2828e2843.
4.2. Cytotoxicity against cancer cell lines
Compounds (0.01e5 mg/mL) were tested for cytotoxic activity
against four cancer cell lines: SF-295 (Central Nervous System),
HCT-8 (colon), MDA-MB-435 (melanoma) and HL-60 (leukemia)
(National Cancer Institute, Bethesda, MD). All cell lines were
maintained in RPMI 1640 medium supplemented with 10% fetal
bovine serum, 2 mM glutamine, 100 U/mL penicillin, and 100 mg/
mL streptomycin at 37 ꢁC with 5% CO2. Each compound was dis-
solved with DMSO and diluted with water to obtain a concentration
of 1 mg/mL. They were incubated with the cells for 72 h. The
negative control received the same amount of DMSO (0.005% in the
highest concentration). Doxorubicin (0.1e0.58
m
g/mL) was used as
[13] M.P. Wentland, S.C. Aldous, M.D. Gruett, R.B. Perni, R.G. Powles, D.W. Danz,
K.M. Klingbeil, A.D. Peverly, R.G. Robinson, T.H. Corbett, J.B. Rake,
S.A. Coughlin, Bioorg. Med. Chem. Lett. 5 (1995) 405e410.
[14] S. Paul, M. Gupta, R. Gupta, A. Loupy, Tetrahedron Lett. 42 (2001)
3827e3829.
a positive control. The cell viability was determined by reduction of
the yellow dye 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetra-
zolium bromide (MTT) to a blue formazan product as described by
Mosmann.
[15] R.I. Fryer, P. Zhang, R. Rios, Z. Gu, A.S. Basile, P. Skolnick, J. Med. Chem. 36
(1993) 1669e1673.
[16] M.V.N. De Souza, T.R.A. Vasconcelos, M.V. De Almeida, S.H. Cardoso, Curr. Med.
Chem. 13 (2006) 455e463.
4.3. Cell membrane disruption
[17] R. Dayam, L.Q. Al-Mawsawi, Z. Zawahir, M. Witvrouw, Z. Debyser, N. Neamati,
J. Med. Chem. 51 (2008) 1136e1144.
[18] P.T. Meinke, S.L. Colletti, G. Doss, R.W. Myers, A.M. Gurnett, P.M. Dulski,
S.J. Darkin-Rattray, J.J. Allocco, S. Galuska, D.M. Schmatz, M.J. Wyvratt,
M.H. Fisher, J. Med. Chem. 43 (2000) 4919e4922.
[19] M. Hadjeri, E.L. Peiller, C. Beney, N. Deka, M.A. Lawson, C. Dumontet,
A. Boumendjel, J. Med. Chem. 47 (2004) 4964e4970.
[20] C.H. Park, J. Lee, H.Y. Jung, M.J. Kim, S.H. Lim, H.T. Yeo, E.C. Choi, E.J. Yoon,
K.W. Kim, J.H. Cha, S.H. Kim, D.J. Chang, D.Y. Kwon, F. Lia, Y.G. Suha, Bioorg.
Med. Chem. 15 (2007) 6517e6526.
The test was performed in 96-well plates using a 2% mouse
erythrocyte suspension in 0.85% NaCl containing 10 mM CaCl2,
following the method described by Costa-Lotufo et al. [26]. The
compounds diluted as mentioned above were tested at concen-
trations ranging from 1.5 to 250 mg/mL. After incubation at room
temperature for 30 min and centrifugation, the supernatant was
removed and the liberated hemoglobin was measured spectro-
photometrically at 540 nm. DMSO was used as a negative control
and Triton X-100 (1%) was used as positive control. EC50 is the
[21] A.F. Nogueira, E.C. Azevedo, V.F. Ferreira, A.J. Araújo, E.A. Santos, C. Pessoa,
L.V. Costa-Lotufo, R.C. Montenegro, M.O. Moraes, T.R.A. Vasconcelos, Lett. Drug
Des. Discov. 7 (2010) 551e555.