[7] P. R. Ashton, C. L. Brown, S. Menzer, S. A. Nepogodiev, J. F.
[8] a) V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya,
K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A.
Rapp, H. W. Spiess, S. D. Hudson, H. Duan, Nature 2002, 419,
384 – 387; b) L. Sardone, V. Palermo, E. Devaux, D. Credging-
ton, M. De Loos, G. Marletta, F. Cacialli, J. Van Esch, P. Samori,
[10] S. H. J. Idziak, N. C. Maliszewskyj, P. A. Heiney, J. P. McCauley,
appear to be less efficient in filling the space between the
columns compared to those of 1a. As a result, the local
mobility of the macrocyclic core for 1b is higher than that of
1a, as deduced from additional solid-state NMR experiments.
These experiments show that 1a has a dynamical order
parameter S ꢀ 1, whereas 1b shows an increased mobility with
S ꢀ 0.8 (Figures S17 and S18).
The results presented here are based on a detailed
structural investigation of shape-persistent macrocycles in
the columnar LC phase by using complementary techniques.
The shape-persistent rings in 1a pack on top of each other
without any spatial offset, thus leading to a tight tubular
supramolecular superstructure. The side chains at the con-
densed bithiophene unit and the additional trialkoxybenzyl
units at the ring periphery allow the formation of nano-
channels by purely dissipative forces (p–p interactions).
Solid-state NMR spectroscopy unambiguously proves that
the channels do not host solvent molecules or back-folded
alkyl chains. Compound 1a forms a particularly highly
ordered columnar structure both in bulk and on graphite
surfaces. Thus, even compounds with a reduced symmetry can
organize in highly ordered columnar stacks with an almost
perfect sixfold symmetry. This organization offers unforeseen
freedom in the design of macrocycles to create highly
functionalized alignable supramolecular nanochannels with
uniform size. The internal order of the channels can be
molecularly controlled and adjusted for future applications in
recognition, stabilization, or organization of nanoparticles.
Ongoing studies of symmetry-reduced macrocycles with
different molecular structures are aimed at testing the
selectivity of incorporation and verifying if tubes with an
even larger inner diameter can be formed.
[11] a) S. Hꢀger, J. Polym. Sci. Part A 1999, 37, 2685 – 2698; b) W.
2656; b) O. Y. Mindyuk, M. R. Stetzer, P. A. Heiney, J. C.
Seo, T. V. Jones, H. Seyler, J. O. Peters, T. H. Kim, J. Y. Chang,
[14] a) D. L. Morrison, S. Hꢀger, J. Chem. Soc. Chem. Commun.
1996, 2313 – 2314; b) S. Hꢀger, V. Enkelmann, K. Bonrad, C.
I. Schnell, W. Mamdouh, S. De Feyter, F. C. De Schryver, S.
Cheng, A. D. Ramminger, V. Enkelmann, A. Rapp, M. Mon-
deshki, I. Schnell, Angew. Chem. 2005, 117, 2862 – 2866; Angew.
Chem. Int. Ed. 2005, 44, 2801 – 2805.
[15] a) J. Luo, Q. Yan, Y. Zhou, T. Li, N. Zhu, C. Bai, Y. Cao, J. Wang,
Pisula, M. Kastler, C. Yang, V. Enkelmann, K. Mꢁllen, Chem.
[16] T. Chen, G. Pan, H. Wettach, M. Fritzsche, S. Hꢀger, L. Wan, H.
Received: November 26, 2010
Published online: February 15, 2011
[17] c2mm is the highest 2D symmetry compatible with the reflec-
tions only observed for Miller indices h + k = 2n, see Interna-
tional Tables for Crystallography, Vol. A (Ed.: T. Hahn), Kluwer
Academic Publishers, Dordrecht, 1989, p. 90, and one of the
commonly found plane groups for the 2D lattices in columnar
phases (corresponds to the planar space group C2/m assigned to
these phases, see for example, Ref. [5], Vol. 2, Weinheim, Wiley,
1998, chap. 8.
[18] K. Praefcke, D. Singer in Handbook of Liquid Crystals, Vol. 2B
(Eds.: D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V.
Vill), Wiley-VCH, Weinheim, 1998, pp. 945 – 967.
[21] C. Ochsenfeld, S. P. Brown, I. Schnell, J. Gauss, H. W. Spiess,
J. Am. Chem. Soc. 2001, 123, 2597 – 2606.
[23] a) F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, A. Schenning,
Pisula, M. R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko,
[25] A. Hoffmann, D. Sebastiani, E. Sugiono, S. Yun, K. S. Kim,
Keywords: helical structures · liquid crystals · macrocycles ·
.
nanopores · solid-state NMR spectroscopy
Khan, S. Hecht, Top. Curr. Chem. 2005, 245, 89 – 150.
[3] a) T. Naddo, Y. Che, W. Zhang, K. Balakrishnan, X. Yang, M.
6978 – 6979; b) Y. Baudry, G. Bollot, V. Gorteau, S. Litvinchuk, J.
Mareda, M. Nishihara, D. Pasini, F. Perret, D. Ronan, N. Sakai,
M. R. Shah, A. Som, N. Sorde, P. Talukdar, D. H. Tran, S. Matile,
[4] a) G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J.
b) V. Percec, A. E. Dulcey, V. S. K. Balagurusamy, Y. Miura, J.
Smidrkal, M. Peterca, S. Nummelin, U. Edlund, S. D. Hudson,
P. A. Heiney, D. A. Hu, S. N. Magonov, S. A. Vinogradov, Nature
Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science
[5] D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill,
Handbook of Liquid Crystals, Wiley-VCH, Weinheim, 1998.
[6] M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, N.
Angew. Chem. Int. Ed. 2011, 50, 3030 –3033
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3033