J. Zhang et al. / Tetrahedron Letters 52 (2011) 1578–1582
1581
Table 4
5. Li, H.-Y.; Drummond, S.; De Lucca, I.; Boswell, G. A. Tetrahedron 1996, 52,
11153–11162.
Reusability of Cu(II)–(IAA)2 catalyst in the synthesis of imidazolines
6. Sun, M.; Wu, X.-Q.; Chen, J.-Q.; Cai, J.; Cao, M.; Ji, M. Eur. J. Med. Chem. 2010, 45,
2299–2306.
Recycling no.
Reflux conditions
MW irradiation
Time (min)
7. Kawamura, K.; Naganawa, M.; Konno, F.; Yui, J.; Wakizaka, H.; Yamasaki, T.;
Yanamoto, K.; Hatori, A.; Takei, M.; Yoshida, Y.; Sakaguchi, K.; Fukumura, T.;
Kimura, Y.; Zhang, M. R. Nucl. Med. Biol. 2010, 37, 625–635.
8. Park, Y.; Kang, S.; Lee, Y.-J.; Kim, T.-S.; Jeong, B.-S.; Park, H.-G.; Jew, S.-S. Org.
Lett. 2009, 11, 3738–3741.
9. Defacqz, N.; Van, T.-T.; Cordi, A.; Marchand-Brynaert, J. Tetrahedron Lett. 2003,
44, 9111–9114.
10. Yan, L.-W.; Wang, Z.; Chen, M.-T.; Wu, N.-J.; Lan, J.-B.; Gao, X.; You, J.-S.; Gau,
H.-M.; Chen, C.-T. Chem. Eur. J. 2008, 14, 11601–11609.
Time (min)
Yielda (%)
Yielda (%)
1
2
3
4
5
240
240
240
240
240
97
97
96
94
94
5
5
5
5
5
99
99
98
98
97
a
Yield determined by GC–MS using an internal standard.
11. Vorbrueggen, H.; Krolikiewicz, K. Tetrahedron Lett. 1981, 22, 4471–4474.
12. Sperber, N.; Fricano, R. J. Am. Chem. Soc. 1953, 75, 2986–2988.
13. Levesque, G.; Gressier, J. C.; Proust, M. Synthesis 1981, 963–965.
14. Hill, A. J.; Johnston, J. V. J. Am. Chem. Soc. 1954, 76, 922–923.
15. Salgado-Zamora, H.; Campos, E.; Jimenez, R.; Cervantes, H. Heterocycles 1998,
47, 1043–1049.
16. You, S.-L.; Kelly, J. W. Org. Lett. 2004, 6, 1681–1683.
17. Mirkhani, V.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.;
Abdollahi-Alibeik, M.; Kargar, H. Appl. Catal., A 2007, 325, 99–104.
18. Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.;
Hojati, S. F. Polyhedron 2008, 27, 750–758.
19. Hojati, S. F.; Mohammadpoor-Baltork, I.; Maleki, B.; Gholizadeh, M.;
Shafiezadeh, F.; Haghdoust, M. Can. J. Chem. 2010, 88, 135–141.
20. Dash, P.; Kudav, D. P.; Parihar, J. A. J. Chem. Res. 2004, 7, 490–491.
21. Ullmann, F.; Bielecki, J. J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174–2185.
22. (a) Holub, J. M.; Kirshenbaum, K. Chem. Soc. Rev. 2010, 39, 1325–1337; (b)
Weickgenannt, A.; Oestreich, M. Chem. Eur. J. 2010, 16, 402–412; (c) Reymond,
S.; Cossy, J. J. Chem. Rev. (Washington, DC, US) 2008, 108, 5359–5406.
23. Rousselet, G.; Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1993, 34, 6395–
6398.
24. Frankenberer, W. T., Jr.; Arshad, M. Phytohormones in soil: microbial production
and function; Dekker: New York, 1995.
25. Singh, A. K.; Prakash, D. J. Inorg. Nucl. Chem. 1978, 40, 579–581.
26. The preparation of Cu(II)–(IAA)2. To
a solution of indole-3-acetic acid
(5.7 mmol, 1.0 g) in 15 mL of water, a solution of NaOH (5.7 mmol, 0.23 g) in
10 mL of water was slowly added under stirring. To this solution, an aqueous
solution of CuCl2 (previously prepared with 2.8 mmol CuCl2Á2H2O in 15 mL of
water) was added, then green precipitation generated. The precipitation was
washed with water and dried under vacuum. The identities of products were
confirmed by IR data, IR (KBr): 3381, 1598, 1417, 1282, 794, 743 cmÀ1
.
Scheme 2. Proposed mechanism for the synthesis of 2-imidazolines and their N-
27. The typical reaction procedure under reflux condition. In
a 50 mL round
hydroxyethyl derivatives catalyzed by Cu(II)–(IAA)2.
bottom flask equipped with a water condenser, magnetic stirrer and oil-bath, a
mixture of nitrile (4.0 mmol), EDA (32 mmol) and Cu(II)–(IAA)2 (0.8 mmol) was
heated under reflux condition. The progress of the reaction was monitored by
TLC (eluent: EtOAc/MeOH, 3:1). After completion of the reaction, CH2Cl2
(10 mL) was added and the catalyst was filtered. The solvent was evaporated
under reduced pressure and the crude products were obtained. Compound 3a–
i were purified by recrystallization from cyclohexane respectively, and 3j–r
were purified by a silica gel column (eluent: EtOAc/MeOH, 3:1). The identities
of products were confirmed by mp, 1H NMR, MS and IR data.
formation of nitrogen cation 1. EDA or AEEA attacks 1 to afford 2
and 3. Finally, the corresponding imidazoline or N-hydroxyethyl-
imidazoline is produced by releasing NH3 and the catalyst for the
next catalytic cycle.
In summary, we have first demonstrated that Cu(II)–(IAA)2 can
be used as a green and reusable catalyst for efficient synthesis of
imidazolines and their N-hydroxyethyl derivatives under either re-
flux condition or MW irradiation. The attractive features of this
procedure are the mild reaction conditions, high conversions, sol-
vent free and reusable catalyst, all of which make it a useful and
attractive strategy for the preparation of various imidazolines. In
addition, a new method of synthesizing the N-hydroxyethyl-imi-
dazolines is proposed and seven N-hydroxyethyl-imidazolines are
reported for the first time.
28. The characterization of the new compounds. Compond 3k: Light yellow liquid.
IR (KBr): 3372, 2943, 1659, 1532, 1460, 1434, 1052, 750, 692 cmÀ1 1H NMR
;
(CDCl3, 400 MHz) d: 2.90 (m, 2H, CH2), 2.99 (m, 2H, CH2), 3.47 (s, 1H, OH), 3.67
(m, 2H, CH2), 3.72 (m, 2H, CH2), 7.43 (m, 1H, ArH), 7.84 (m, 1H, ArH), 8.17 (d,
1H, ArH), 8.55 (d, 1H, ArH); MS m/z: 191 (9.6%), 160 (53.6%), 118 (4.2%), 105
(21.1%), 78 (34.8%), 56 (100%). Compond 3l: Light yellow liquid. IR (KBr): 3337,
2957, 1607, 1427, 1299, 1057, 749, 707 cmÀ1 1H NMR (CDCl3, 400 MHz) d:
;
2.52 (s, 1H, OH), 3.37 (m, 2H, CH2), 3.76 (m, 2H, CH2), 4.06 (m, 2H, CH2), 7.44
(m, 1H, ArH), 8.20 (d, 1H, ArH), 8.77 (d, 1H, ArH), 8.97 (s, 1H, ArH); MS m/z: 191
(11.4%), 160 (50.1%), 118 (13.0%), 56 (100%). Compond 3m: Light yellow liquid.
IR (KBr): 3349, 2950, 1650, 1549, 1419, 1307, 1062, 839, 752, 683 cmÀ1 1H
;
NMR (CDCl3, 400 MHz) d: 2.51 (s, 1H, OH), 2.83 (m, 2H, CH2), 2.92 (m, 2H, CH2),
3.55 (m, 2H, CH2), 3.73 (m, 2H, CH2), 7.51 (d, 1H, ArH), 7.70 (d, 1H, ArH), 8.65
(d, 1H, ArH), 8.70 (d, 1H, ArH); MS m/z: 191 (11.9%), 160 (53.2%), 118 (11.4%),
56 (100%). Compond 3n: Light yellow solid, mp 137–138 °C. IR (KBr): 3268,
Acknowledgements
2948, 1638, 1597, 1487, 1447, 1321, 1093, 1013, 843, 762 cmÀ1 1H NMR
;
(CDCl3, 400 MHz) d: 3.04 (m, 2H, CH2), 3.17 (m, 2H, CH2), 3.84 (s, 1H, OH), 3.99
(m, 2H, CH2), 4.18 (m, 2H, CH2), 7.37 (d, 1H, ArH), 7.43 (d, 1H, ArH), 7.85 (d, 1H,
ArH), 7.95 (d, 1H, ArH); MS m/z: 226 (2.9%), 224 (9.0%), 193 (34.3%), 56 (100%).
Compond 3p: White solid, mp 249–250 °C. IR (KBr): 3133, 2874, 2833, 1594,
The work was supported by the Natural Science Foundation of
China (No. 20972124), the China Postdoctoral Science Foundation
(No. 20080441180), the Chinese National Science Foundation for
Talent Training (No. J0830417) and the Chinese National Innova-
tion Experiment Program for University Students (No. 091069714).
1523, 1424, 1264, 1247, 1088, 859, 688 cmÀ1 1H NMR (DMSO-d6, 400 MHz) d:
;
2.60 (m, 4H, CH2), 2.69 (m, 4H, CH2), 3.50 (m, 4H, CH2), 3.75 (m, 4H, CH2), 4.82
(s, 2H, OH), 7.60 (m, 4H, ArH); MS m/z: 303[M+1+]. Compond 3q: White solid,
mp 162–163 °C. IR (KBr): 3157, 2879, 2834, 2227, 1590, 1553, 1431, 1363,
1251, 1064, 869, 848, 745 cmÀ1 1H NMR (CDCl3, 400 MHz) d: 2.19 (s, 1H, OH),
;
References and notes
3.22 (m, 2H, CH2), 3.63 (m, 2H, CH2), 3.77 (m, 2H, CH2), 3.96 (m, 2H, CH2), 7.72
(d, 2H, ArH), 7.80 (d, 1H, ArH); MS m/z: 215 (8.8%), 184 (34.4%), 142 (8.8%), 102
(8.3%), 56 (100%). Compond 3r: White solid, mp 120–121 °C. IR (KBr): 3141,
2901, 2230, 1613, 1588, 1495, 1430, 1362, 1256, 1093, 807, 706; 1H NMR
(CDCl3, 400 MHz) d: 2.33 (s, 1H, OH), 3.20 (m, 2H, CH2), 3.59 (m, 2H, CH2), 3.75
(m, 2H, CH2), 3.96 (m, 2H, CH2), 7.54 (m, 1H, ArH), 7.72 (d, 1H, ArH), 7.89 (d, 1H,
ArH), 7.97 (s, 1H, ArH); MS m/z: 215 (8.9%), 184 (35.2%), 142 (8.5%), 102 (7.8%),
56 (100%).
1. Dolinkin, A. O.; Chernov’yants, M. S. Pharm. Chem. J. 2010, 44, 99–106.
2. Meidute-Abaraviciene, S.; Mosen, H.; Lundquist, I.; Salehi, A. Acta Physiol. 2009,
195, 375–383.
3. Kahlon, D. K.; Lansdell, T. A.; Fisk, J. S.; Tepe, J. J. Bioorg. Med. Chem. 2009, 17,
3093–3103.
4. Masajtis-Zagajewska, A.; Majer, J.; Nowicki, M. Hypertens. Res. 2010, 33, 348–
353.