3 K. Fraze, A. D. Wilson, A. M. Appel, M. Rakowski DuBois and
D. L. DuBois, Organometallics, 2007, 26, 5003.
4 A. D. Wilson, K. Fraze, B. Twamley, S. Miller, D. L. DuBois and
M. Rakowski DuBois, J. Am. Chem. Soc., 2008, 130, 1061.
´
5 P.-A. Jacques, V. Artero, J. Pecaut and M. Fontecave, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 20627.
6 L. A. Berben and J. C. Peters, Chem. Commun., 2010, 46,
398–400.
7 N. K. Szymczak, L. A. Berben and J. C. Peters, Chem. Commun.,
2009, 6729.
8 G. M. Jacobsen, J. Y. Yang, B. Twamley, A. D. Wilson,
R. M. Bullock, M. Rakowski DuBois and D. L. DuBois, Energy
Environ. Sci., 2008, 1, 167.
9 E. Wiedner, J. Y. Yang, W. G. Dougherty, W. S. Kassel,
R. M. Bullock, M. Rakowski DuBois and D. L. DuBois, Organo-
metallics, DOI: 10.1021/om100395r.
10 J. Chen, A. K. Vannucci, C. A. Mebi, N. Okumura,
S. C. Borowski, M. Swenson, L. T. Lockett, D. H. Evans,
R. S. Glass and D. L. Lichtenberger, Organometallics, DOI:
10.1021/om100396j.
Fig.
3
Calculated reaction profile for all boat confomer of
[Ni(PCy2NMe2)2]2+ + H2. Blue lines: energy; red lines: free energy.
11 C. Tard and C. J. Pickett, Chem. Rev., 2009, 109, 2245.
12 S. Ott, M. Kritikos, B. Akermark, L. Sun and R. Lomoth, Angew.
Chem., Int. Ed., 2004, 116, 1024.
13 D. Chong, I. P. Georgakaki, M. L. Miller, R. Mejia-Rodriguez and
M. Y. Darensbourg, Dalton Trans., 2003, 4158.
14 R. Meija-Rodriguez, D. Chong, J. H. Reibenspies, M. P.
Soriaga and M. Y. Darensbourg, J. Am. Chem. Soc., 2004, 126,
12004.
Dashed lines are only a guide to the eye.
cleavage resulting in a Ni2+ hydride species and a protonated
pendant amine. The transition state free energy for this step is
calculated to be +3.5 kcal molꢀ1 higher than the free energy
of the adduct. A homolytic cleavage of the H2 adduct to form
a dihydride intermediate (not shown) was also characterized
and found to have a free energy barrier about twice as large
(B7 kcal molꢀ1) as the heterolytic cleavage. The proton–
hydride complex converts to the experimentally observed
Ni(0) species with two protonated pendant amines with a free
energy barrier of only B1 kcal molꢀ1. The rate-determining
barrier to the overall mechanism of H2 oxidation is thus the
barrier associated with the heterolytic H2 bond cleavage
step in addition to the free energy (translational entropy) loss
due to the coordination of H2 to the complex. A detailed
account of the computational study will be given in a future
publication.36
´
15 L. I. Sima
Chem. Lett., 1975, 11, 773.
´
ndi, Z. Szeverenyi and E. Budo-Zahonyi, Inorg. Nucl.
´
´
´
16 J. P. Collman, L. M. Slaughter, T. A. Eberspacher, T. Strassner
and J. I. Brauman, Inorg. Chem., 2001, 40, 6272.
17 X. Hu, B. S. Brunschwig and J. C. Peters, J. Am. Chem. Soc., 2007,
129, 8988.
18 M. T. Olsen, B. E. Barton and T. B. Rauchfuss, Inorg. Chem.,
2009, 48, 7507.
19 Z. M. Heiden, G. Zampella, L. De Gioia and T. B. Rauchfuss,
Angew. Chem., Int. Ed., 2008, 47, 9756.
20 F. Gloaguen and T. B. Rauchfuss, Chem. Soc. Rev., 2009, 38, 100.
21 M. R. Ringenberg, S. L. Kokatam, Z. M. Heiden and
T. B. Rauchfuss, J. Am. Chem. Soc., 2008, 130, 788.
22 M. R. Ringenberg, M. J. Nilges, T. B. Rauchfuss and S. R. Wilson,
Organometallics, 2010, 29, 1956.
In summary,
a
new derivative in the class of
23 S. Ogo, Chem. Commun., 2009, 3317.
[Ni(PR2NR02)2](BF4)2 complexes has been synthesized. The
incorporation of the tert-butyl amine into the cyclohexyl
phosphine framework was designed to lower the free energy
of hydrogen addition/cleavage, the rate-determining step for
catalysis. This has led to an electrocatalyst that is 5 times faster
than the best molecular H2 oxidation catalyst previously
reported, the analogous nickel diphosphine derivative with
benzyl substituents on the nitrogens.1
24 S. Kuwata and T. Ikariya, Dalton Trans., 2010, 39, 2984.
25 C. J. Curtis, A. Miedaner, R. F. Ciancanelli, W. W. Ellis,
B. C. Noll, M. Rakowski DuBois and D. L. DuBois, Inorg. Chem.,
2003, 42, 216.
26 J. Y. Yang, R. M. Bullock, W. J. Shaw, B. Twamley, K. Fraze,
M. Rakowski DuBois and D. L. DuBois, J. Am. Chem. Soc., 2009,
131, 5935.
27 J. P. Collman, P. S. Wagenknecht, J. E. Hutchison, N. S. Lewis,
M. A. Lopez, R. Guilard, M. L’her, A. A. Bothner-By and
P. K. Mishra, J. Am. Chem. Soc., 1992, 114, 5654.
28 M. Rakowski DuBois and D. L. DuBois, C. R. Chim., 2008, 11,
805.
29 M. Rakowski DuBois and D. L. DuBois, Chem. Soc. Rev., 2009,
38, 62.
30 J. Y. Yang, R. M. Bullock, W. G. Dougherty, W. S. Kassel,
B. Twamley, D. L. DuBois and M. Rakowski DuBois, Dalton
Trans., 2010, 39, 3001.
This research was supported as part of the Center for
Molecular Electrocatalysis, an Energy Frontier Research
Center funded by the US Department of Energy, Office of
Science, Office of Basic Energy Sciences. Pacific Northwest
National Laboratory is operated by Battelle for the US Depart-
ment of Energy. Computational resources were provided by the
Environmental Molecular Science Laboratory (EMSL) and the
National Energy Research Scientific Computing Center
(NERSC) at Lawrence Berkeley National Laboratory.
31 V. G. Markl, G. Y. Jin and C. Schoerner, Tetrahedron Lett., 1980,
¨
21, 1409.
32 K. D. Welch, W. G. Dougherty, W. S. Kassel, D. L. DuBois and
R. M. Bullock, Organometallics, DOI: 10.1021/om100668e.
33 D. L. Pool and D. L. DuBois, J. Organomet. Chem., 2009, 694,
2858.
34 A. Miedaner, R. C. Haltiwanger and D. L. DuBois, Inorg. Chem.,
1991, 30, 417.
35 J. W. Raebiger, A. Miedaner, C. J. Curtis, S. M. Miller and
D. L. DuBois, J. Am. Chem. Soc., 2004, 126, 5502.
36 S. Chen, R. Rousseau, S. Raugei, M. Dupuis and R. M. Bullock, in
preparation.
Notes and references
1 A. D. Wilson, R. H. Newell, M. J. McNevin, J. T. Muckerman,
M. Rakowski DuBois and D. L. DuBois, J. Am. Chem. Soc., 2006,
128, 358.
2 A. D. Wilson, A. Miedaner, J. T. Muckerman, D. L. DuBois and
M. Rakowski DuBois, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 6951.
c
8620 Chem. Commun., 2010, 46, 8618–8620
This journal is The Royal Society of Chemistry 2010