264
J. M. Concellón et al.
LETTER
(12) Concellón, J. M.; Bernad, P. L.; Pérez-Andrés, J. A. Angew.
Chem. Int. Ed. 1999, 38, 2384.
(13) (a) Concellón, J. M.; Bernad, P. L.; Bardales, E. Org. Lett.
2001, 3, 937. (b) Concellón, J. M.; Rodríguez-Solla, H.;
Simal, C.; Gómez, C. Synlett 2007, 75.
In order to explain the E-stereoselectivity, we propose a
half-chair transition state model I in which the bulkier
group R1 is pseudoequatorial. As depicted in the C2–C3
Newman projection of II, R1 and R2 have a cis relation-
ship leading to the E-stereoisomers upon elimination. In
addition, thermodynamic control of the elimination would
afford the E-isomer.22
(14) Concellón, J. M.; Rodríguez-Solla, H.; Simal, C.; Santos, D.;
Paz, N. R. Org. Lett. 2008, 10, 4549.
(15) General Procedure for the Synthesis of Aliphatic (E)-a,b-
Unsaturated Esters 4a–c: A solution of the requisite a-
halo-b-hydroxy ester 3a–c (0.2 mmol) in THF (2.5 mL) was
added dropwise at r.t. and vigorous stirring to a mixture of
SmI2 (0.1 M in THF, 0.8 mL) and activated magnesium (1.2
mmol) with TMSCl (1.2 mmol) in THF (2.5 mL). After
stirring at the same temperature for 18 h, the excess of SmI2
was removed by bubbling a stream of air through the
solution. An aqueous solution of 0.1 N HCl (10 mL) was
then added and the aqueous phase was extracted with
CH2Cl2 (3 × 10 mL). The combined organic layers were
dried over anhyd Na2SO4, filtered and concentrated in
vacuo. Flash column chromatography on silica gel (hexane–
EtOAc, 5:1) provided pure compounds 4a–c.
In conclusion, an efficient, general and very cheap meth-
odology has been developed to synthesize a,b-unsaturated
esters with total E stereoselectivity from easily available
a-halo-b-hydroxy esters, with catalytic amounts of SmI2.
Attempts to carry out other processes by using catalytic
samarium diiodide, are currently under investigation
within our laboratory.
Acknowledgment
We thank the Ministerio de Ciencia e Innovación (MICINN
CTQ2007-61132) and the Principado de Asturias (FICYT IB08-
028) for financial support. C.C. thanks MICINN for a Juan de la
Cierva contract.
(16) Kunishima, M.; Nakata, D.; Sakuma, T.; Kono, K.; Sato, S.;
Tani, S. Chem. Pharm. Bull. 2001, 49, 97.
(17) General Procedure for the Synthesis of Aromatic (E)-a,b-
Unsaturated Esters 4d–i: A solution of the requisite a-
halo-b-hydroxy ester 3d–i (0.2 mmol) in THF (2.5 mL) was
added dropwise at r.t. and vigorous stirring to a mixture of
SmI2 (0.1 M in THF, 0.8 mL) and activated magnesium (1.2
mmol) with iodine and zinc dichloride (1.2 mmol) in THF
(2.5 mL). After stirring at the same temperature for 18 h, the
excess of SmI2 was removed by bubbling a stream of air
through the solution. An aqueous solution of 0.1 N HCl (10
mL) was then added. The aqueous phase was filtered
through a pad of celite® and extracted with CH2Cl2 (3 × 10
mL). The combined organic layers were dried over anhyd
Na2SO4, filtered and concentrated in vacuo. Flash column
chromatography on silica gel (hexane–EtOAc, 5:1) provided
pure compounds 4d–i.
(18) Wittig reactions carried out with enolizable carbonyl
compounds can generate alkenes in very low yield:
Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
(19) Spectroscopic data of compound 4a has been described in:
Concellón, J. M.; Pérez-Andrés, J.; Rodríguez-Solla, H.
Angew. Chem. Int. Ed. 2000, 39, 2773.
References and Notes
(1) For reviews concerning the synthetic applications of SmI2,
see: (a) Steel, P. G. J. Chem. Soc., Perkin Trans. 1 2001,
2727. (b) Kagan, H. B. Tetrahedron 2003, 59, 10351.
(c) Concellón, J. M.; Rodríguez-Solla, H. Chem. Soc. Rev.
2004, 33, 599. (d) Berndt, M.; Gross, S.; Hölemann, A.;
Reissig, H.-U. Synlett 2004, 422. (e) Edmonds, D. J.;
Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371.
(f) Concellón, J. M.; Rodríguez-Solla, H. Eur. J. Org. Chem.
2006, 1613. (g) Rudkin, I. M.; Miller, L. C.; Procter, D. J.
Organomet. Chem. 2008, 34, 19. (h) Gopalaiah, K.; Kagan,
H. B. New. J. Chem. 2008, 32, 607. (i) Nicolau, K. C.;
Ellery, S. P.; Chen, J. S. Angew. Chem. Int. Ed. 2009, 48,
7140. (j) Procter, D. J.; Flowers, R. A. II.; Skrysdtrup, T.
Organic Synthesis by Using Samarium Diiodide; Royal
Society of Chemistry: Cambridge, 2009. (k) Concellón,
J. M.; Rodríguez-Solla, H.; Concellón, C.; del Amo, V.
Chem. Soc. Rev. 2010, 39, 4103.
(20) Spectroscopic data of compounds 4b–g and 4i have been
described in the following references: (a) For compounds
4b, 4c and 4f see, ref. 19. (b) For compound 4d, see: Wolan,
A. Tetrahedron 2009, 65, 7429. (c) For compound 4e, see:
Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008,
130, 2424. (d) For compound 4g, see: Li, K.; Ran, L.; Yu,
Y.-H.; Tang, Y. J. Org. Chem. 2004, 69, 3980. (e) For
compound 4i, see: Dolby, L. J.; Riddle, G. N. J. Org. Chem.
1967, 32, 3481.
(2) Orsini, F.; Lucci, E. M. Tetrahedron Lett. 2005, 46, 1909.
(3) (a) Hélion, F.; Namy, J.-L. J. Org. Chem. 1997, 64, 2944.
(b) Lannon, M.-I.; Hélion, F.; Namy, J.-L. Tetrahedron
2003, 59, 10551.
(4) (a) Nomura, R.; Matsuno, T.; Endo, T. J. Am. Chem. Soc.
1996, 118, 11666. (b) Aspinall, H. C.; Greeves, N.; Valla, C.
Org. Lett. 2005, 10, 1919.
(5) Hébri, H.; Dunach, E.; Heintz, M.; Troupel, M.; Périchon, J.
Synlett 1991, 901.
(21) Other six-membered ring transition state models have been
proposed to explain the selectivity in other reactions of
SmI2: (a) Molander, G. A.; Etter, J. B.; Zinke, P. W. J. Am.
Chem. Soc. 1987, 109, 453. (b) Urban, D.; Skrydstrup, T.;
Beau, J. M. J. Org. Chem. 1998, 63, 2507. (c) Concellón, J.
M.; Pérez-Andrés, J. A.; Rodríguez-Solla, H. Angew. Chem.
Int. Ed. 2000, 39, 2773. (d) Concellón, J. M.; Pérez-Andrés,
J. A.; Rodríguez-Solla, H. Chem. Eur. J. 2001, 7, 3062.
(e) See also refs 1j and 8–13.
(22) This model assumes that the transformation of
diastereoisomeric mixture of 3 leads only to the stereoisomer
of appropriate conformation for coordination of the
samarium(III) center by the hydroxy group.
(6) Corey, E. J.; Zheng, G. Z. Tetrahedron 1997, 12, 2045.
(7) To see a review about b-elimination reactions promoted by
SmI2, see ref. 1j.
(8) Concellón, J. M.; Pérez-Andrés, J. A.; Rodríguez-Solla, H.
Angew. Chem. Int. Ed. 2000, 39, 2773.
(9) Concellón, J. M.; Pérez-Andrés, J. A.; Rodríguez-Solla, H.
Chem. Eur. J. 2001, 7, 3062.
(10) Concellón, J. M.; Huerta, M. Tetrahedron Lett. 2003, 44,
1931.
(11) Concellón, J. M.; Bernad, P. L.; Rodríguez-Solla, H.;
Concellón, C. J. Org. Chem. 2007, 72, 5421.
Synlett 2011, No. 2, 262–264 © Thieme Stuttgart · New York