pubs.acs.org/joc
SCHEME 1. Cyclization of o-Alkynylbenzylidene Ketones
Catalyzed by Pd(II)
Palladium(II)-Catalyzed Synthesis of Functionalized
Indenes from o-Alkynylbenzylidene Ketones
Feng Zhou, Xiuling Han, and Xiyan Lu*
State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of
Sciences, 345 Lingling Road, Shanghai 200032, China
to the synthesis of the indene ring system have been devel-
oped, embodying the annulation of phenyl-substituted
allylic alcohols,4 the ring expansion of substituted cyclo-
propenes,5 and the reduction/dehydration of the indanones.6
Although the methods mentioned above are quite effective in
synthesizing simple indenes, certain drawbacks are unavoid-
able in the preparation of highly substituted indenes, namely
lengthy reaction sequences, strong acid conditions, and the
low tolerance for sensitive organic functionality. Tandem
cyclization reactions catalyzed by transition metals have
been proven highly useful especially when the highly sub-
stituted indene derivatives and their yields are concerned,7,8
whereas there are only limited reports for the synthesis of
acetoxyindenes or haloindenes.9 On the basis of the advance-
ment of acetoxypalladation and halopalladation chemistry,10
we conceived if 3-functionalized indenes could be obtained
via the tandem reaction of o-alkynylbenzylidene ketone
initiated by nucleopalladation of the triple bond (Scheme 1).
Herein we report our results of the successful synthesis of this
class of indene compounds.
Received November 27, 2010
An efficient method for the synthesis of functionalized
indenes from o-alkynylbenzylidene ketones under palla-
dium(II) catalysis was developed. The reaction is initiated
by trans-nucleopalladation of alkynes, followed by con-
jugate addition and quenched by protonolysis of the
carbon-palladium bond. With acetate and halide ions
as nucleophiles, 3-acetoxy- and 3-halogen-substituted in-
denes could be obtained in high yields.
With the hypothesis mentioned above, initial studies were
focused on using o-alkynylbenzylidene ketone 1a as a model
substrate. Gratifyingly, the tandem cyclized product 2a was
formed in 85% yield in HOAc (Table 1, entry 1). Other
solvents such as HOAc/CH3CN (1/1), HOAc/DCE (1/1),
Molecules containing the indene core have been attractive
as drug candidates possessing remarkable biological
activities,1 and show great interest as functional materials2
as well as precursors of metallocene complexes3 for catalysts
of polymerization processes. Consequently, some approaches
(5) Yoshida, H.; Kato, M.; Ogata, T. J. Org. Chem. 1985, 50, 1145.
(6) (a) Prugh, J. D.; Alberts, A. W.; Deana, A. A.; Gilfillian, J. L.; Huff,
J. W.; Smith, R. L.; Wiggins, J. M. J. Med. Chem. 1990, 33, 758. (b) Becker,
C.; McLaughlin, M. Synlett 1991, 642.
(7) (a) Zhang, D.; Yum, E. K.; Liu, Z.; Larock, R. C. Org. Lett. 2005, 7,
4963. (b) Zhang, D.; Liu, Z.; Yum, E. K.; Larock, R. C. J. Org. Chem. 2007,
72, 251. (c) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am.
Chem. Soc. 2000, 122, 7280. (d) Tsukamoto, H.; Ueno, T.; Kondo, Y. Org.
Lett. 2007, 9, 3033. (e) Zhou, F.; Yang, M.; Lu, X. Org. Lett. 2009, 11, 1405.
(f) Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun. 2009, 5406.
(g) Bi, H.; Guo, L.; Gou, F.; Duan, X.; Liu, X.; Liang, Y. J. Org. Chem. 2008,
73, 4713. (h) Nishikata, T.; Kiyomura, S.; Yamamoto, Y.; Miyaura, N.
Synlett 2008, 2487. (i) Nishikata, T.; Kobayashi, Y.; Kobayshi, K.; Yama-
moto, Y.; Miyaura, N. Synlett 2007, 3055.
(8) For selective examples for Rh-catalyzed synthesis of indenes, see:
(a) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem.
Commun. 2009, 5141. (b) Miyamoto, M.; Harada, Y.; Tobisu, M.; Chatani,
N. Org. Lett. 2008, 10, 2975. (c) Sun, Z.; Chen, S.; Zhao, P. Chem.;Eur. J.
2010, 16, 2619. For papers on indenol synthesis, see: Shintani, R.; Okamoto,
K.; Hayashi, T. Chem. Lett. 2005, 34, 1294.
(1) (a) Clegg, N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S. J. Med.
Chem. 2005, 48, 5989. (b) Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 2397.
(c) Lautens, M.; Marquardt, T. J. Org. Chem. 2004, 69, 4607. (d) Maguire,
A. R.; Papot, S.; Ford, A.; Touhey, S.; O’Connor, R.; Clynes, M. Synlett
2001, 41. (e) Gao, H.; Katzenellenbogen, J. A.; Garg, R.; Hansch, C. Chem.
Rev. 1999, 99, 723. (f) Senanayake, C. H.; Roberts, F. E.; DiMichele, L. M.;
Ryan, K. M.; Liu, J.; Fredenburgh, L. E.; Foster, B. S.; Douglas, A. W.;
Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1995, 36,
3993. (g) Shanmugam, P.; Rajasingh, P. Chem. Lett. 2005, 34, 1494.
(h) Huffman, J. W.; Padgett, L. W. Curr. Med. Chem. 2005, 12, 1395.
(i) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami, Y.;
Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.; Chikazawa, Y.;
Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M. J. Med. Chem. 1996, 39, 3636.
(j) Palm, J.; Boegesoe, K. P.; Liljefors, T. J. Med. Chem. 1993, 36, 2878.
(2) (a) Yang, J.; Lakshmikantham, M. V.; Cava, M. P.; Lorcy, D.;
Bethelot, J. R. J. Org. Chem. 2000, 65, 6739. (b) Barbera, J.; Rakitin,
O. A.; Ros, M. B.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37, 296.
(c) Akbulut, U.; Khurshid, A.; Hacioglu, B.; Toppare, L. Polymer 1990,
31, 1343.
(9) (a) Tutar, A.; Cakmak, O.; Balci, M. Tetrahedron 2001, 57, 9759.
(b) Moss, R. A.; Xue, S.; Sauers, R. R. J. Am. Chem. Soc. 1996, 118, 10307.
(c) Zhou, X.; Zhang, H.; Xie, X.; Li, Y. J. Org. Chem. 2008, 73, 3958.
(d) Ivchenko, N. B.; Ivchenko, P. V.; Nifant’ev, I. E.; Kotov, V. V. Russ.
Chem. Bull. 2000, 49, 942. (e) Saito, S.; Homma, M.; Gevorgyan, V.;
Yamamoto, Y. Chem. Lett. 2000, 722.
(3) (a) Alt, H. G.; Koppl, A. Chem. Rev. 2000, 100, 1205. (b) Leino, R.;
Lehmus, P.; Lehtonen, A. Eur. J. Inorg. Chem. 2004, 3201. (c) Cadierno, V.;
Dı
´
ez, J.; Gamasa, M. P.; Gimeno, J.; Lastra, E. Coord. Chem. Rev. 1999, 193,
(10) (a) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059. (b) Zhao,
L; Lu, X. Org. Lett. 2002, 4, 3903. (c) Wang, Z.; Lu, X. Chem. Commun. 1996,
535. (d) Wang, Z.; Lu, X. J. Org. Chem. 1996, 61, 2254. (e) Wang, Z.; Lu, X.
Tetrahedron Lett. 1997, 38, 5213. (f) Wang, Z.; Lu, X.; Lei, A.; Zhang, Z. J.
Org. Chem. 1998, 63, 3806. (g) Wang, Z.; Zhang, Z.; Lu, X. Organometallics
2000, 19, 775. (h) Lu, X. Top. Catal. 2005, 35, 73.
147. (d) Zargarian, D. Coord. Chem. Rev. 2002, 233, 157. (e) Wang, B. Coord.
Chem. Rev. 2006, 250, 242.
(4) (a) Miller, W.; Pittman, C. J. Org. Chem. 1974, 39, 1955. (b) Gassman,
P. G.; Ray, J. A.; Wenthold, P. G.; Mickelson, J. W. J. Org. Chem. 1991, 56,
5143. (c) Singh, G.; Ila, H.; Junjappa, H. Synthesis 1986, 744.
DOI: 10.1021/jo1023574
r
Published on Web 01/20/2011
J. Org. Chem. 2011, 76, 1491–1494 1491
2011 American Chemical Society