LETTER
First Synthesis of Methyl 2-Amino-6-Methoxynicotinate
205
O
O
O
MeO
EtOOCHNSCHN
14
HN
MeO
H2N
SCNCOOEt
97%
EtONa
99%
N
OMe
HS
N
N
OMe
N
OMe
4
15
Scheme 4 Synthesis of the fused 2-pyridone system
Thompson, S.-A.; Wafford, K.; Dawson, G. R.; Pike, A.;
Sohal, B.; Tsou, N. N.; Ball, R. G.; Castro, J. L. J. Med
Chem. 2002, 45, 1887.
In an additional proof of concept experiment, 4 was trans-
formed into 7-methoxy-2-mercaptopyrido[2,3-d]pyrimi-
din-4(3H)-one (15, Scheme 4),19 thus demonstrating the
utility of 2-amino-6-methoxynicotinate in the synthesis of
the fused 2-pyridone systems. The synthetic sequence in-
volved reaction with ethoxycarbonyl isothiocyanate,20
followed by cyclization of the intermediate thiourea 14
into 7-methoxy derivative 15.21
(8) Mokrosz, J. L.; Duszynska, B.; Paluchowska, M. H.;
Charakchieva-Minol, S.; Mokrosz, M. J. Arch. Pharm.
(Weinheim, Ger.) 1995, 328, 623.
(9) Torres, M.; Gil, S.; Parra, M. Curr. Org. Chem. 2005, 9,
1757.
(10) For recent examples of cyclization based on 2-amino-
nicotinic acid, see: (a) 1,8-Naphthyridin-4(1H)-ones:
Bilokin, M. D.; Yushchenko, D. A.; Pivovarenko, O. V.;
Pivovarenko, V. G. Ukr. Bioorg. Acta 2008, 6, 13. (b) 3,4-
Dihydro-4-oxopyrido[2,3-d]pyrimidines: Storelli, S.;
Verzijl, D.; Al-Badie, J.; Elders, N.; Bosch, L.; Timmerman,
H.; Smit, M. J.; De Esch, I. J. P.; Leurs, R. Arch. Pharm.
(Weinheim, Ger.) 2007, 340, 281. (c) 4-Chloropyrido[2,3-
d]pyrimidine: Echeverria, M.; Mendivil, B.; Cordeu, L.;
Cubedo, E.; Garcia-Foncillas, J.; Font, M.; Sanmartin, C.;
Palop, J. A. Arch. Pharm. (Weinheim, Ger.) 2006, 339, 182.
(d) 3-Benzimidazolo-2-pyridinamine and 1H-imidazo[4,5-
c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine: Bamford, M. J.;
Alberti, M. J.; Bailey, N.; Davies, S.; Dean, D. K.; Gaiba, A.;
Garland, S.; Harling, J. D.; Jung, D. K.; Panchal, T. A.; Parr,
C. A.; Steadman, J. G.; Takle, A. K.; Townsend, J. T.;
Wilson, D. M.; Witherington, J. Bioorg. Med. Chem. Lett.
2005, 15, 3402. (e) 1H-Pyrido[2,3-b]azepine-5,8-dione:
Kunick, C.; Lauenroth, K.; Wieking, K.; Xie, X.; Schultz,
C.; Gussio, R.; Zaharevitz, D.; Leost, M.; Meijer, L.; Weber,
A.; Jorgensen, F. S.; Lemcke, T. J. Med. Chem. 2004, 47,
22. (f) Imidazo[1,2-a]pyridine-8-carboxamide: Masurier,
N.; Moreau, E.; Lartigue, C.; Gaumet, V.; Chezal, J.-M.;
Heitz, A.; Teulade, J.-C.; Chavignon, O. J. Org. Chem.
2008, 73, 5989.
In summary, we report herein the first synthesis of methyl
2-amino-6-methoxynicotinate (4) and proved its utility in
the synthesis of fused 2-pyridone systems. The key fea-
tures of the four-step process are microwave-induced
regioselective 6-methoxylation, esterification, and se-
quential microwave-induced reaction with p-methoxy-
benzylamine followed by deprotection under flow-
reaction hydrogenation conditions. The microwave-in-
duced and microfluidic steps are advantageous and time-
saving while maintaining the desired regioselectivity and
improving the purity profile of the product. Further prep-
arations of fused heterocyclic systems based on 4 are in
progress and will be reported in due course.
Supporting Information for this article is available online at
Acknowledgment
The authors thank Dr. Brian T. Gregg (AMRI) for his valuable com-
ments and helpful discussions.
(11) (a) Direct copper-catalyzed amination of 2,6-dichloro-
nicotinic acid results in 4.5% of 2-amino-6-chloroderivative.
Its further alcoholysis gives corresponding 6-ethoxy- and
6-isopropoxy-2-aminonicotinic acids: Nakamoto, K.;
Matsukura, M.; Tanaka, K. EP 1782811, 2007.
References and Notes
(1) Current address: EGIS Gyógyszergyár Nyrt., Keresztúri út
30-38, 1106 Budapest, Hungary
(2) Medina-Franco, J. L.; Martinez-Mayorga, K.; Juarez-
Gordiano, C.; Castillo, R. ChemMedChem 2007, 2, 1141.
(3) Shen, L. L.; Tanaka, S. K.; Chu, D. T. W. Curr. Pharm.
Design 1997, 3, 169.
(b) Synthetic applications of the title compound were
described recently without preparative details: Chen, Q.;
Feng, Y.; Wang, Z.; Yue, B.; Zhuang, W. CN 1701031,
2010.
(12) Hirokawa, Y.; Horikawa, T.; Kato, S. Chem. Pharm. Bull.
2000, 48, 1847.
(4) Kim, O. K.; Barrett, J. F.; Ohemeng, K. Exp. Opin. Investig.
(13) Lee, J.; Kirincich, S. J.; Smith, M. J.; Wilson, D. P.; Follows,
B. C.; Wan, Z.-K.; Joseph-Mccarthy, D. M.; Erbe, D. V.;
Zhang, Y.-L.; Xu, W.; Tam, S. Y. WO 081960, 2005.
(14) Plourde, R. Jr.; Shaver, S. R.; Douglass, J. G. III.; Watson,
P. S.; Boyer, J. L.; Tu, C.; Abreo, M. A.; Alfaro-Lopez, L. J.;
Feng, Y.; Harvey, D. F.; Khasanova, T. V. US 267134, 2005.
(15) Hirokawa, Y.; Fujiwara, I.; Suzuki, K.; Harada, H.;
Yoshikawa, T.; Yoshida, N.; Kato, S. J. Med. Chem. 2003,
46, 702.
Drugs 2001, 10, 199.
(5) Li, Q.; Mitscher, L. A.; Shen, L. L. Med. Res. Rev. 2000, 20,
231.
(6) Spicer, J. A.; Rewcastle, G. W.; Kaufman, M. D.; Black,
S. L.; Plummer, M. S.; Denny, W. A.; Quin, J. III.;
Shahripour, A. B.; Barrett, S. D.; Whitehead, C. E.; Milbank,
J. B. J.; Ohren, J. F.; Gowan, R. C.; Omer, C.; Camp, H. S.;
Esmaeil, N.; Moore, K.; Sebolt-Leopold, J. S.;
Pryzbranowski, S.; Merriman, R. L.; Ortwine, D. F.;
Warmus, J. S.; Flamme, C. M.; Pavlovsky, A. G.; Tecle, H.
J. Med. Chem. 2007, 50, 5090.
(16) Guiadeen, D.; Hale, J. J.; Kothandaraman, S. WO 130527,
2008.
(17) (a) Kovacs, I.; Jones, R.; Otvos, Z.; Urge, L.; Dorman, G.;
Darvas, F. In Heterogeneous Catalysis Research Progress;
(7) Collins, I.; Moyes, C.; Davey, W. B.; Rowley, M.;
Bromidge, F. A.; Quirk, K.; Atack, J. R.; McKernan, R. M.;
Synlett 2011, No. 2, 203–206 © Thieme Stuttgart · New York