LETTER
Synthesis of the Spirofungin A Core
189
work was carried out within the framework of COST action
CM0804, Chemical Biology with Natural Products.
interaction could be observed. In addition, the spiroacetal
carbon of 29a, featuring two anomeric effects, appears at
slightly higher field (d = 96.8 ppm) as compared to the
corresponding carbon atom in 29b (d = 97.4 ppm).7 Selec-
tive formation of 29a, corresponding to the core structure
of spirofungin A was possible with N-iodosuccinimide
(NIS, 1.5 equiv) in CH2Cl2–MeCN at –90 °C.22 Formation
of 30a is the result of a trans-diaxial attack of electrophile
and nucleophile to the glycal double bond.37 The crude io-
dide 30a was directly subjected to reductive dehalogena-
tion using the combination of tributyltin hydride and
triethylborane38 providing the spiroacetal 29a in 69%
overall yield from substrate 28.
References and Notes
(1) For recent reviews, see: (a) Aho, J. E.; Pihko, P. M.; Rissa,
T. K. Chem. Rev. 2005, 105, 4406. (b) Kiyota, H. Top.
Heterocycl. Chem. 2006, 5, 65. (c) El Sous, M.; Ganame,
D.; Zanatta, S.; Rizzacasa, M. A. ARKIVOC 2006, (vii),
105. (d) Booth, Y. K.; Kitching, W.; De Voss, J. Nat. Prod.
Rep. 2009, 26, 490.
(2) (a) Young, J.; Taylor, R. E. Nat. Prod. Rep. 2008, 25, 651.
(b) Frank, B.; Knauber, J.; Steinmetz, H.; Scharfe, M.;
Blöcker, H.; Beyer, S.; Müller, R. Chem. Biol. 2007, 14, 221.
(3) Pothier, N.; Goldstein, S.; Deslongchamps, P. Helv. Chim.
Acta 1992, 75, 604.
(4) Höltzel, A.; Kempter, C.; Metzger, J. W.; Jung, G.; Groth, I.;
Fritz, T.; Fiedler, H.-P. J. Antibiot. 1998, 51, 699.
(5) Marjanovic, J.; Kozmin, S. A. Angew. Chem. Int. Ed. 2007,
46, 8854; Angew. Chem. 2007, 119, 9010.
(6) See also: Miyamoto, Y.; Machida, K.; Mizunuma, M.;
Emoto, Y.; Sato, N.; Miyahara, K.; Hirata, D.; Usui, T.;
Takahashi, H.; Osada, H.; Miyakawa, T. J. Biol. Chem.
2002, 277, 28810.
OH OBn
PMBO
20
15
Cl3C6H2COCl
CO2H
+
25
Et3N, DMAP
TBSO
PMBO
20
toluene (97%)
H
TiCl4, MeCHBr2
PbCl2, Zn
O
O
TBSO
OBn
TMEDA, CH2Cl2
(83%)
(7) This paper reports on the synthesis and structural revision of
spirofungin B: Zanatta, S. D.; White, J. M.; Rizzacasa, M. A.
Org. Lett. 2004, 6, 1041.
(8) Shimizu, T.; Satoh, T.; Murakoshi, K.; Sodeoka, M. Org.
Lett. 2005, 7, 5573.
26
PMBO
H
O
CSA, CH2Cl2
(9) Crimmins, M. T.; O’Bryan, E. A. Org. Lett. 2010, 12, 4416.
(10) (a) Shimizu, Y.; Kiyota, H.; Oritani, T. Tetrahedron Lett.
2000, 41, 3141. (b) Shimizu, T.; Kusaka, J.; Ishiyama, H.;
Nakata, T. Tetrahedron Lett. 2003, 44, 4965. (c) Dias, L.
C.; De Oliveira, L. G. Org. Lett. 2004, 6, 2587.
(d) La Cruz, T. E.; Rychnovsky, S. D. Org. Lett. 2005, 7,
1873.
(11) Shimizu, T.; Usui, T.; Fujikura, M.; Kawatani, M.; Satoh, T.;
Machida, K.; Kanoh, N.; Woo, J.-T.; Osada, H.; Sodeoka,
M. Bioorg. Med. Chem. Lett. 2008, 18, 3756.
(12) Barun, O.; Kumar, K.; Sommer, S.; Langerak, A.; Mayer,
T. U.; Müller, O.; Waldmann, H. Eur. J. Org. Chem. 2005,
4773.
(55%)
(29a/29b = 1:3)
RO
OBn
BnO
27 R = TBS
28 R = H
TBAF
THF, 60 °C
(92%)
BnO
9
14
12
10
10
O
O
O
+
15
16
15
11
11
19
O
PMBO
20
NOE
18
NOE
OPMB
29a
29b
I
OBn
NIS
CH2Cl2–MeCN
10
O
15
Bu3SnH
11
20
(13) El Sous, M.; Ganame, D.; Tregloan, P. A.; Rizzacasa, M. A.
Org. Lett. 2004, 6, 3001.
(14) Dorta, R. L.; Martín, A.; Salazar, J. A.; Suárez, E.; Prangé,
T. J. Org. Chem. 1998, 63, 2251.
28
29a
O
Et3B, toluene
(69%, 2 steps)
–90 °C, 2 h
OPMB
30a
(15) Wipf, P.; Uto, Y.; Yoshimura, S. Chem. Eur. J. 2002, 8,
1670.
(16) Shimizu, T.; Kobayashi, R.; Osako, K.; Osada, H.; Nakata,
T. Tetrahedron Lett. 1996, 37, 6755.
Scheme 5 Condensation of acid 20 and alcohol 25 to olefinic ester
26 and its conversion into spiroacetal 29a
(17) (a) Hao, J.; Forsyth, C. J. Tetrahedron Lett. 2002, 43, 1.
(b) Wang, C.; Forsyth, C. J. Org. Lett. 2006, 8, 2997.
(18) (a) Liu, B.; De Brabander, J. K. Org. Lett. 2006, 8, 4907.
(b) Li, Y.; Zhou, F.; Forsyth, C. J. Angew. Chem. Int. Ed.
2007, 46, 279; Angew. Chem. 2007, 119, 283. (c) Trost,
B. M.; O’Boyle, B. M. J. Am. Chem. Soc. 2008, 130, 16190.
(d) Aponick, A.; Li, C.-Y.; Palmes, J. A. Org. Lett. 2009, 11,
121.
In summary, we could demonstrate that unsaturated ester
26 could be converted in an efficient and highly stereo-
selective manner into spiroacetal 29a which corresponds
to the core structure of spirofungin A. One big advantage
is the convergent nature of this strategy relying on rela-
tively simple building blocks.
(19) (a) Diez-Martin, D.; Grice, P.; Kolb, H. C.; Ley, S. V.;
Madin, A. Tetrahedron Lett. 1990, 31, 3445. (b)Uchiyama,
M.; Oka, M.; Harai, S.; Ohta, A. Tetrahedron Lett. 2001, 42,
1931.
Supporting Information for this article is available online at
(20) (a) Fujimura, O.; Fu, G. C.; Grubbs, R. H. J. Org. Chem.
1994, 59, 4029. (b) Fuwa, H.; Naito, S.; Goto, T.; Sasaki, M.
Angew. Chem. Int. Ed. 2008, 47, 4737; Angew. Chem. 2008,
120, 4815.
Acknowledgment
Financial support by the Deutsche Forschungsgemeinschaft and the
Fonds der Chemischen Industrie is gratefully acknowledged. This
Synlett 2011, No. 2, 187–190 © Thieme Stuttgart · New York