Journal of the American Chemical Society
COMMUNICATION
Scheme 4
This material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was supported by the Natural Science Foundation
of China and the Major State Basic Research Development
Program (2011CB808705). Y.L. is thankful for financial support
from the Postdoctorate Research Fund of China (20090460144).
We thank Prof. Zhangjie Shi and Prof. Ning Jiao for valuable
discussions on reaction mechanism. We also thank Hua Huang
and Prof. Haichao Liu for GC analyses of the gas composition of
the reactions.
for details). (2) When 4-nitrobenzaldehyde was added, the
reaction did not generate any MeBr. Instead, GC analysis clearly
showed the formation of CH4 (see the SI for details). In addition,
tert-butyl 4-nitrobenzoate (8) was obtained in 55% isolated yield.
(3) Formation of MeOt-Bu was not observed either with or
without the aldehyde.
’ REFERENCES
(1) For reviews, see: (a) Jones, G. R.; Landais, Y. Tetrahedron 1996,
52, 7599. (b) Franz, A. K.; Woerpel, K. A. Acc. Chem. Res. 2000, 33, 813.
(c) Rauf, W.; Hazari, A.; Gouverneur, V.; Brown, J. M. Pure Appl. Chem.
2010, 82, 1415. (d) Hiyama, T. J. Synth. Org. Chem. Jpn. 2010, 68, 729.
(2) For reviews of transition-metal-catalyzed cleavage of C(sp2)ꢀSi
bonds, see: (a) Hiyama, T. In Metal-Catalyzed Cross-Coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998.
(b) Hiyama, T. J. Organomet. Chem. 2002, 653, 58. (c) Denmark, S. E.;
Sweiss, R. F. Acc. Chem. Res. 2002, 35, 835. (d) Spivey, A. C.; Gripton,
C. J. G.; Hannah, J. P. Curr. Org. Synth. 2004, 1, 211. (e) Denmmark,
S. E.; Baird, J. D. Chem.—Eur. J. 2006, 12, 4954. For representative
examples, see:(f) Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.;
Hiyama, T. J. Am. Chem. Soc. 2005, 127, 6952. (g) Alacid, E.; Nꢀajera,
C. Adv. Synth. Catal. 2006, 348, 2085. (h) Yang, S.; Li, B.; Wan, X.; Shi, Z.
J. Am. Chem. Soc. 2007, 129, 6066. (i) Dai, X.; Strotman, N. A.; Fu, G. C.
J. Am. Chem. Soc. 2008, 130, 3302. (j) Zhang, L.; Wu, J. J. Am. Chem. Soc.
2008, 130, 12250.
(3) For selected examples of transition-metal-catalyzed cleavage of
C(sp)ꢀSi bonds, see: (a) Wu, M.-J.; Wei, L.-M.; Lin, C.-F.; Leou, S.-P.;
Wei, L.-L. Tetrahedron 2001, 57, 7839. (b) Sommer, W. J.; Weck, M.
Adv. Synth. Catal. 2006, 348, 2101. (c) Horita, A.; Tsurugi, H.; Satoh, T.;
Miura, M. Org. Lett. 2008, 10, 1751. (d) Huang, H.; Liu, H.; Jiang, H.;
Chen, K. J. Org. Chem. 2008, 73, 6037. (e) Sakai, N.; Komatsu, R.;
Uchida, N.; Ikeda, R.; Konakahara, T. Org. Lett. 2010, 12, 1300.
(4) van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.; Akkerman, O. S.;
Bickelhaupt, F.; Spek, A. L. Organometallics 2002, 21, 2119.
(5) (a) Wang, Z.; Fang, H.; Xi, Z. Tetrahedron Lett. 2005, 46, 499.
(b) Hudrlik, P. F.; Dai, D.; Hudrlik, A. M. J. Organomet. Chem. 2006,
691, 1257. (c) Wang, C.; Luo, Q.; Sun, H.; Guo, X.; Xi, Z. J. Am. Chem.
Soc. 2007, 129, 3094. (d) Yu, N.; Wang, C.; Zhao, F.; Liu, L.; Zhang,
W.-X.; Xi, Z. Chem.—Eur. J. 2008, 14, 5670.
On the basis of the above experimental observations, a
possible mechanism for the selective cleavage of the C(Me)ꢀSi
bond and the consequent intramolecular C(sp2)ꢀSi coupling is
given in Scheme 4. First, oxidative addition of Pd(0) to the CꢀBr
bond of substrates 4 (or 2) would generate intermediate 6. Next,
though the detailed mechanism is not clear yet, nucleophilic
attack by the CꢀPd bond at the silicon center would generate
product silole 5 (or 3) along with elimination of the MePdBr
species via cleavage of the MeꢀSi bond.9,10,15 Reductive elim-
ination of the MePdBr would then release MeBr (observed) and
regenerate the active Pd(0) species for the catalytic cycle via
path I. When 4-nitrobenzaldehyde is added, an addition
reaction of the in situ-generated MePdBr with 4-nitrobenzal-
dehyde and LiOt-Bu would form intermediate 7 and LiBr, as
shown in path II.16 β-Hydrogen elimination from 7 would
then generate 8 (observed) along with the MePdH species.17
Reductive elimination from the MePdH species would then
release CH4 (observed) and regenerate the active Pd(0)
species for the catalytic cycle via path II. As a consequence
of the fact that reductive elimination of MePdH occurs more
readily than that of MePdBr,17,18 the yields of products are
remarkably increased.
In summary, a novel process involving Pd-catalyzed selective
cleavage of the C(sp3)ꢀSi bond in a trialkyl group and conse-
quent intramolecular C(sp2)ꢀSi bond forming process has been
developed. This reaction provides the first efficient synthesis of
benzosilolo[2,3-b] indoles, which represent a new type of silicon-
bridged polyheteroarene. In addition, for the first time, aldehyde
has been found to be able to promote the efficiency of the
catalytic process remarkably. This finding opens a new method
for selective cleavage of the C(sp3)ꢀSi bond in a trialkyl group
and its synthetic applications.
(6) (a) Palmer, W. S.; Woerpel, K. A. Organometallics 1997, 16, 4824.
(b) Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 949.
(7) (a) Cho, J. E.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson,
D. A.; Buchwald, S. L. Science 2010, 328, 1679. (b) Chu, L.; Qing, F.-L.
Org. Lett. 2010, 12, 5060. (c) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2010,
132, 7262.
(8) (a) Hosomi, A. Acc. Chem. Res. 1988, 21, 200. (b) Fleming, I.;
Dunoguꢁes, J.; Smithers, R. Org. React. 1989, 37, 57. (c) Fleming, I.;
Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063. (d) Mateo, C.;
Fernꢀandez-Rivas, C.; Echavarren, A. M.; Cꢀardenas, D. J. Organometallics
1997, 16, 1997. (e) Matsuda, T.; Kadowaki, S.; Yamaguchi, Y.; Murakami,
M. Chem. Commun. 2008, 2744.
’ ASSOCIATED CONTENT
(9) Rauf, W.; Brown, J. M. Angew. Chem., Int. Ed. 2008, 47, 4228.
(10) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc.
2009, 131, 7506.
S
Supporting Information. Experimental details, X-ray
b
data for 3a (CIF), and scanned NMR spectra of all new products.
9206
dx.doi.org/10.1021/ja2024959 |J. Am. Chem. Soc. 2011, 133, 9204–9207