838
Z. Sebestyén et al. / Carbohydrate Research 346 (2011) 833–838
The cyclic saccharide glucose does not form any insoluble prod-
uct, and has no effect on the association equilibria of the other
components. This fundamental difference can be understood con-
sidering that the tetrahedral form of PhBA16 and the alpha-fura-
nose form of glucose13 are suitable for the interaction, and the
equilibrium concentrations of both are very low in neutral aqueous
solution.
Nevertheless, the stoichiometry of the associates dominating in
solution and in solid phase is not necessarily the same, owing to
the different solubilities, so these findings do not contradict the re-
sults obtained by spectrophotometry and potentiometry in more
diluted solutions where some low stability ternary complexes
could be detected.
In spite of formal similarities, the behaviour of phenylphos-
phonic acid and phenylboronic acid in the interactions is substan-
tially different. The much stronger acidity and real dissociation of
the former prevents direct association with the small carbohy-
drate molecules, while the inclusion complex with b-CD can take
part in further interactions to form ternary complexes of low
stability. On the other hand, the structural differences of the small
carbohydrate molecules lead to significantly different complex
forming behaviour.
Acknowledgement
We are grateful to Cyclolab Ltd for supplying the b-CD and to
the Hungarian Research Foundation (OTKA T-32470) for the partial
financial support.
References
Fig. 2. Infrared spectra recorded in nujol: (a) b-CD, (b) b-CD-phenylboronic acid
complex, (c) the precipitate obtained in the b-CD-phenylboronic acid-sorbitol
system.
1. Cyclodextrin Technology; Szejtli, J., Ed.; Kluwer Academic Publishers.:
Dordrecht/Boston/London, 1988; pp 79–84.
2. Paal, T. L.; Szejtli, J. Acta Chim. Acad. Sci. Hung 1981, 106, 9–15.
3. Hacket, F.; Coteron, J. M.; Schneider, H.-J.; Kazachenko, V. P. Can. J. Chem. 1997,
75, 5254.
4. Tarnai, M.; Buvári-Barcza, Á.; Barcza, L. J. Inclusion Phenom. Macrocycl. Chem.
1999, 34, 311–319.
5. Buvári, Á.; Barcza, L. Acta Chim. Acad. Sci. Hung 1989, 126, 455–462.
6. Buvári-Barcza, Á.; Csampai, A.; Barcza, L. J. Inclusion Phenom. Macrocycl. Chem.
2002, 42, 209–212.
7. Buvári, Á.; Barcza, L. J. Inclusion Phenom. Mol. Recognit. 1989, 7, 379–389.
8. Fenyvesi, É.; Vikmon, M.; Szeman, J., et al J. Inclusion Phenom. Macrocycl. Chem.
2000, 36, 355–370.
9. Kuivala, H. G.; Keough, A. H.; Soboczenski, E. J. J. Org. Chem. 1954, 19, 780–783.
10. Torsell, K. Arkiv för Kemi 1957, 10, 541–547.
be attributed to the modified hydrogen bonding ability caused by
the b-CD–PhBA interaction.
In the IR spectrum of the PhBA–sorbitol–b-CD ternary system
(Fig. 2c) the characteristic features of both the PhBA-sorbitol and
PhBA–b-CD systems can be observed, as if a somewhat decreased
PhBA-sorbitol spectrum were superimposed on
a decreased
PhBA–b-CD spectrum.
Similar observations can be made in comparison of the IR
spectra of the PhBA–mannitol–b-CD system and those of the pure
components and binary systems: the characteristic absorptions of
PhBA appear somewhat shifted, with relatively low intensity, the
broad OH-band shows the shape of that of the b-CD-complex and
the OH-bands of mannitol disappeared.
11. Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769–774.
12. Paál, T. L. Acta Chim. Acad. Sci. Hung 1981, 106, 71–81.
13. Norrild, J. C.; Eggert, H. J. Am. Chem. Soc. 1995, 117, 1479–1484.
14. Arimori, S.; Ward, C. J.; James, T. D. Tetrahedron Lett. 2002, 43, 303–305.
15. Springsteen, G.; Wang, B. Tetrahedron 2002, 58, 5291–5300.
16. Bosch, L. J.; Files, T. M.; James, T. D. Tetrahedron 2004, 60, 11175–11190.
17. Nicholls, M. P.; Paul, P. K. C. Org. Biomol. Chem. 2004, 2, 1434–1441.
18. Mader, H. S.; Wolfbeis, O. S. Microchim. Acta 2008, 162, 1–34.
19. Innocenti, A.; Firnges, M. A.; Antel, J., et al Bioorg. Med. Chem. Lett. 2004, 14,
5769–5773.
4. Conclusions
20. Dagger, P. S.; Smith, K. S.; Iverson, T. M.; Ferry, J. G.; Rees, D. C. J. Biol. Chem.
2001, 276, 10299–10305.
Summarizing the results, the IR spectra are in complete agree-
ment with the conclusions drawn from the results of the HPLC
analysis: the precipitates formed on the dissolution of PhBA in
solutions of open chain carbohydrates and b-CD consist mainly of
binary associates: ester type 3:1 complexes with the carbohydrate
and 1:1 inclusion complex with the b-CD. The sequence of the sol-
ubilities is: PhBA-sorbitol < PhBA-mannitol < PhBA–b-CD. The
presence of some minor amounts of outer sphere type (hydrogen
bonded) ternary associates can not be excluded.
21. Liu, Y. P.; Narla, R. K.; Uekun, F. M. Bioorg. Med. Chem. Lett. 2003, 13, 581–583.
22. Buvári, Á.; Barcza, L.; Kajtar, M. J. Chem. Soc., Perkin Trans. 2 1988, 1687–1690.
23. Csernák, O.; Buvari-Barcza, Á.; Samu, J.; Barcza, L. J. Inclusion Phenom.
Macrocycl. Chem. 2005, 51, 59–63.
24. Buvári, Á.; Barcza, L. J. Inclusion Phenom. Mol. Recognit. 1989, 7, 313–320.
25. Buvári, Á.; Bodnar-Gyarmathy, D.; Barcza, L. J. Inclusion Phenom. Mol. Recognit.
1994, 18, 301–306.
26. Dissociation Constants of Organic Acids in Aqueous Solution; Kortüm, G., Vogel,
W., Andrussow, K., Eds.; Butterworth: London, 1961.
27. Buvári, Á.; Szejtli, J.; Barcza, L. Acta Chim. Acad. Sci. Hung 1982, 110, 51–57.
28. Schlenk, H.; Sand, D. M. J. Am. Chem. Soc. 1961, 83, 2313–2320.