´
J.G. Małecki, A. Maron / Polyhedron 30 (2011) 1225–1232
1232
the energy of the p orbitals of Clꢀ. In the case of neutral complex 2a,
the isothiocyanate ligand shifts the Homo and Homo ꢀ 1 orbitals to
a higher energy.
[2] A.K. Singh, P. Kumar, M. Yadav, D.S. Pandey, J. Organomet. Chem. 695 (2010)
567.
[3] B.J. Coe, S.J. Glenwright, Coord. Chem. Rev. 203 (2000) 5.
[4] M.U. Raja, N. Gowri, R. Ramesh, Polyhedron 29 (2010) 1175.
[5] R. Sivakumar, A.T.M. Marcelis, S. Anandan, J. Photochem. Photobiol. A: Chem.
208 (2009) 154.
[6] T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, Kaługa Kasuga, Y.
Kawanishi, M. Kurashige, K. Sayama, H. Sugihara, Inorg. Chem. Commun. 12
(2009) 842.
[7] N. Onozawa-Komatsuzaki, M. Yanagida, T. Funaki, K. Kasuga, K. Sayama, H.
Sugihara, Inorg. Chem. Commun. 12 (2009) 1212.
[8] S. Kannan, M. Sivagamasundari, R. Ramesh, Yu Liu, J. Organomet. Chem. 693
(2008) 2251.
[9] M. Sivagamasundari, R. Ramesh, Spectrochim. Acta, Part A 67 (2007) 256.
[10] M. Sivagamasundari, R. Ramesh, Spectrochim. Acta, Part A 66 (2007) 427.
[11] M.V. Kaveri, R. Prabhakaran, R. Karvembu, K. Natarajan, Spectrochim. Acta,
Part A 61 (2005) 2915.
[12] M. Ulaganatha Raja, N. Gowri, R. Ramesh, Polyhedron 29 (2010) 1175.
[13] E.M.J. Johansson, M. Odelius, M. Gorgoi, O. Karis, R. Ovsyannikov, F. Schäfers, S.
Svensson, H. Siegbahn, H. Rensmo, Chem. Phys. Lett. 464 (2008) 192.
[14] J.G. Małecki, Polyhedron 29 (2010) 1237.
4. Conclusion
Summarizing, new ruthenium(II) complexes with pyridine
derivative ligands have been synthesized. The molecular structures
of the complexes were determined by X-ray crystallography, and
the spectroscopic properties were studied using infrared, 1H and
31P NMR spectra. Based on the crystal structures, computational
studies were carried out in order to determine the electronic
structures of the complexes. The results were used to compare
the
p-donor/acceptor properties of the pyridine type ligands.
Electronic spectra were calculated with use of the TD-DFT method
and the transitions characters were discussed in connection with
structure of the molecular orbitals of the complexes. The emission
properties of the complexes have been examined. Emissions origi-
nating from the lowest energy metal to ligand charge transfer
[15] J.G. Małecki, Polyhedron 29 (2010) 1973.
[16] J.G. Małecki, Polyhedron 29 (2010) 2489.
[17] J.G. Małecki, Polyhedron 29 (2011) 79.
[18] N. Ahmad, J.J. Levinson, S.D. Robinson, M.F. Uttely, Inorg. Synth. 15 (1974) 48.
[19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc.,
Wallingford, CT, 2009.
(MLCT) state, derived from an excitation involving a d
? pligand
p
transition, are observed. The assignment is supported by the
analysis of the frontier orbitals of the corresponding complexes
showing a partial contribution of ligands nature. The thiocyanate
derivative of the cationic complex with the 2,20-dipyridylamine
ligand exhibits a very intense luminescence compared to the chlo-
ride analog.
Appendix A. Supplementary data
[20] A.D. Becke, J. Chem. Phys. 98 (1993) 5648;
CCDC 784657, 792144, 794419 and 798323 contain the supple-
mentary crystallographic data for [RuH(CO)(dpa)(PPh3)2]Cl.dpa.
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[21] T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 393 (2004) 51.
[22] M.E. Casida, in: J.M. Seminario (Ed.), Recent Developments and Applications of
Modern Density Functional Theory, Theoretical and Computational Chemistry,
vol. 4, Elsevier, Amsterdam, 1996, p. 391.
[23] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chim. Acc. 97 (1997)
119.
[24] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO (version 3.1).
[25] N.M. O’Boyle, A.L. Tenderholt, k.M. Langner, J. Comp. Chem. 29 (2008) 839.
[26] Adam L. Tenderholt, QMForge, Version 2.1, Stanford University, Stanford, CA,
USA.
[27] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl.
Crystallogr. 42 (2009) 339.
CH3OH,
[RuH(CO)(dpa)(PPh3)2]SCN.H2O.CH3OH,
[RuHCl(CO)
(pyCHPh)(PPh3)2] and [RuH(SCN)(CO)(pyCHPh)(PPh3)2]. These data
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)
1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Calculations
have been carried out in the Wroclaw Centre for Networking and
Supercomputing (http://www.wcss.wroc.pl)
[28] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
References
[1] M. Chandra, A.N. Sahay, D.S. Pandey, M.C. Puerta, P. Valerga, J. Organomet.
Chem. 648 (2002) 39.