Journal of the American Chemical Society
ARTICLE
Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH: Weinheim, Germany,
2008; Vol. 1, pp 35ꢀ108. (d) Imahori, T. In Acid Catalysis in Modern
Organic Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH:
Weinheim, Germany, 2008; Vol. 1, pp 109ꢀ134. (e) Hatano, M.; Ishihara,
K. In Acid Catalysis in Modern Organic Synthesis; Yamamoto, H., Ishihara, K.,
Eds.; Wiley-VCH: Weinheim, Germany, 2008; Vol. 1, pp 135ꢀ186.
(7) For selected references, see: (a) Svirbely, W. J.; Roth, J. F. J. Am.
Chem. Soc. 1953, 75, 3106–3111. (b) Svirbely, W. J.; Brock, F. H. J. Am.
Chem. Soc. 1955, 77, 5789–5792. (c) Noyce, D. S.; Reed, W. L. J. Am.
Chem. Soc. 1959, 81, 624–628. (d) Okano, V.; Do Amaral, L.; Cordes,
E. H. J. Am. Chem. Soc. 1976, 98, 4201–4203. (e) Guthrie, J. P. J. Am.
Chem. Soc. 1991, 113, 7249–7255 and references cited therein. (f)
Nagorski, R. W.; Mizerski, T.; Richard, J. P. J. Am. Chem. Soc. 1995, 117,
4718–4719. (g) Guthrie, J. P. J. Am. Chem. Soc. 2000, 122, 5529–5538
and references cited therein.
(17) Shen, Y.; Jiang, G.-F. J. Chem. Res. 2000, 140–141.
(18) Nickson, T. E. J. Org. Chem. 1988, 53, 3870–3872.
(19) The observed second-order kinetics would also be compatible
with the formation of an intermediate syn-betaine, if its retro-addition
would be much slower than the time window of our kinetic measure-
ments (vꢀsyn , vanti). The formation of a long-lived betaine intermedi-
ate 11 can be considered as rather unlikely, however, because it has been
shown that oxy-anion species, e.g., simple alkoxides, have very high pKaH
values in DMSO (see refs 8b and 8c) and are, therefore, thermodyna-
mically unstable species. The syn-betaine 11 must, therefore, be a short-
lived intermediate which rapidly reverts to sulfur ylide and aldehyde as
its cyclization has not been observed in DMSO.
(20) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165–195.
(21) R€uchardt, C.; Panse, P.; Eichler, S. Chem. Ber. 1967, 100,
1144–1164.
(8) (a) Ballinger, P.; Long, F. A. J. Am. Chem. Soc. 1960, 82, 795–798.
(b) Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980,
45, 3295–3299. (c) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456–463.
(9) (a) Yoshimine, M.; Hatch, M. J. J. Am. Chem. Soc. 1967,
89, 5831–5838. (b) Johnson, C. R.; Schroeck, C. W. J. Am. Chem. Soc.
1971, 93, 5303–5305. (c) Volatron, F.; Eisenstein, O. J. Am. Chem. Soc.
1987, 109, 1–14. (d) For the special case of a CoreyꢀChaykovsky
reaction with oxathietane formation, see: Kawashima, T.; Ohno, F.; Okazaki,
R.; Ikeda, H.; Inagaki, S. J. Am. Chem. Soc. 1996, 118, 12455–12456.
(e) Aggarwal, V. K.; Calamai, S.; Ford, J. G. J. Chem. Soc., Perkin Trans.
1 1997, 593–599. (f) Lindvall, M. K.; Koskinen, A. M. P. J. Org. Chem.
1999, 64, 4596–4606. (g) Myllym€aki, V. T.; Lindvall, M. K.; Koskinen,
A. M. P. Tetrahedron 2001, 57, 4629–4635. (h) Aggarwal, V. K.; Harvey,
J. N.; Richardson, J. J. Am. Chem. Soc. 2002, 124, 5747–5756. (i) Silva,
M. A.; Bellenie, B. R.; Goodman, J. M. Org. Lett. 2004, 6, 2559–2562.
(j) Aggarwal, V. K.; Bi, J. Beilstein J. Org. Chem. 2005, 1, doi: 10.1186/
1860-5397-1-4. (k) Aggarwal, V. K.; Hebach, C. Org. Biomol. Chem.
2005, 3, 1419–1427. (l) Aggarwal, V. K.; Charmant, J. P. H.; Fuentes, D.;
Harvey, J. N.; Hynd, G.; Ohara, D.; Picoul, W.; Robiette, R.; Smith, C.;
Vasse, J.-L.; Winn, C. L. J. Am. Chem. Soc. 2006, 128, 2105–2114.
(m) Edwards, D. R.; Du, J.; Crudden, C. M. Org. Lett. 2007, 9, 2397–2400.
(n) Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Org. Lett. 2007,
9, 5481–5484.
(22) For selected references on the mechanism of the Wittig re-
action, see: (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89,
863–927. (b) Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T. J. Org.
Chem. 1992, 57, 2865–2869. (c) Vedejs, E.; Peterson, M. J. Top.
Stereochem. 1994, 21, 1–157. (d) Vedejs, E.; Peterson, M. J. In Advances
in Carbanion Chemistry; Snieckus, V., Ed.; JAI Press: London, 1996; Vol.
2; p 1ꢀ85. (e) Yamataka, H.; Nagase, S. J. Am. Chem. Soc. 1998, 120,
7530–7536. (f) Robiette, R.; Richardson, J.; Aggarwal, V. K.; Harvey,
J. N. J. Am. Chem. Soc. 2005, 127, 13468–13469. (g) Robiette, R.;
Richardson, J.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2006,
128, 2394–2409.
(23) The mechanism of the HornerꢀWadsworthꢀEmmons reaction
is closely related to that of the Wittig reaction, although it is still controversial
if the oxaphosphetane formation occurs concerted or stepwise. For selected
references, see: (a) Larsen, R. O.; Aksnes, G. Phosphorus, Sulfur Silicon Relat.
Elem. 1983, 15, 219–228. (b) Larsen, R. O.; Aksnes, G. Phosphorus, Sulfur
Silicon Relat. Elem. 1983, 15, 229–237. (c) Reference 22a. (d) Brandt, P.;
Norrby, P.-O.; Martin, I.; Rein, T. J. Org. Chem. 1998, 63, 1280–1289. (e)
Ando, K. J. Org. Chem. 1999, 64, 6815–6821. (f) Motoyoshiya, J.; Kusaura,
T.; Kokin, K.; Yokoya, S.-i.; Takaguchi, Y.; Narita, S.; Aoyama, H.
Tetrahedron 2001, 57, 1715–1721.
(24) The activation of carbonyl groups by Lewis acids has extensively
been reviewed. For selected examples, see: (a) Vaugeois, J.; Simard, M.;
Wuest, J. D. Coord. Chem. Rev. 1995, 145, 55–73. (b) Yamamoto, H.; Saito,
S. Pure Appl. Chem. 1999, 71, 239–245. (c) Sankararaman, S.; Nesakumar,
J. E. Eur. J. Org. Chem. 2000, 2003–2011. (d) Gawronski, J.; Wascinska, N.;
Gajewy, J. Chem. Rev. 2008, 108, 5227–5252. (e) Acid Catalysis in Modern
Organic Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH: Weinheim,
Germany, 2008; Vol. 1 and 2. (f) Ali, A.; Singh, A. P.; Gupta, R. J. Chem. Sci.
2010, 122, 311–320.
(10) (a) Aggarwal, V. K.; Charmant, J. P. H.; Ciampi, C.; Hornby,
J. M.; O’Brien, C. J.; Hynd, G.; Parsons, R. J. Chem. Soc., Perkin Trans.
1 2001, 3159–3166. (b) Yang, X.-F.; Zhang, M.-J.; Hou, X.-L.; Dai, L.-X.
J. Org. Chem. 2002, 67, 8097–8103. (c) Robiette, R. J. Org. Chem. 2006,
71, 2726–2734. (d) Janardanan, D.; Sunoj, R. B. Chem.—Eur. J. 2007,
13, 4805–4815. (e) Janardanan, D.; Sunoj, R. B. J. Org. Chem. 2008,
73, 8163–8174.
(11) (a) Midura, W. H.; Krysiak, J. A.; Cypryk, M.; Mikolajczyk, M.;
Wieczorek, M. W.; Filipczak, A. D. Eur. J. Org. Chem. 2005, 653–662.
(b) Aggarwal, V. K.; Grange, E. Chem.—Eur. J. 2006, 12, 568–575.
(c) Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.;
Wu, Y.-D.; Dai, L.-X. J. Am. Chem. Soc. 2006, 128, 9730–9740.
(d) Janardanan, D.; Sunoj, R. B. J. Org. Chem. 2007, 72, 331–341. (e)
Riches, S. L.; Saha, C.; Filgueira, N. F.; Grange, E.; McGarrigle, E. M.;
Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 7626–7630.
(12) (a) Lakhdar, S.; Appel, R.; Mayr, H. Angew. Chem., Int. Ed. 2009,
48, 5034–5037. (b) Appel, R.; Hartmann, N.; Mayr, H. J. Am. Chem. Soc.
2010, 132, 17894–17900.
(13) Bug, T.; Lemek, T.; Mayr, H. J. Org. Chem. 2004, 69, 7565–7576.
(14) Appel, R.; Mayr, H. Chem.—Eur. J. 2010, 16, 8610–8614.
(15) Appel, R.; Loos, R.; Mayr, H. J. Am. Chem. Soc. 2009, 131,
704–714.
(16) (a) Aggarwal, V. K.; Ford, J. G.; Fonquerna, S.; Adams, H.;
Jones, R. V. H.; Fieldhouse, R. J. Am. Chem. Soc. 1998, 120, 8328–8339.
(b) Solladiꢀe-Cavallo, A.; Bouꢀerat, L.; Roje, M. Tetrahedron Lett. 2000,
41, 7309–7312. (c) Aggarwal, V. K.; Alonso, E.; Bae, I.; Hynd, G.; Lydon,
K. M.; Palmer, M. J.; Patel, M.; Porcelloni, M.; Richardson, J.; Stenson,
R. A.; Studley, J. R.; Vasse, J.-L.; Winn, C. L. J. Am. Chem. Soc. 2003,
125, 10926–10940. (d) Phillips, D. J.; Graham, A. E. Synlett 2010,
769–773.
(25) For selected reviews, see: (a) Jones, G. In Organic Reactions;
Wiley: New York, 1967; Vol. 15, pp 204ꢀ599. (b) Tietze, L. F.;
Beifuss, U. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Heathcock, C. H., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 2,
pp 341ꢀ394. (c) Smith, M. B.; March, J. March’s Advanced Organic
Chemistry: Reactions, Mechanisms, and Structure; 6th ed.; Wiley: Hoboken,
NJ, 2007; pp 1358ꢀ1363.
(26) For selected reviews, see: (a) Rosini, G. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.;
Pergamon Press: Oxford, U.K., 1991; Vol. 2, pp 321ꢀ340. (b) Ono, N.
The Nitro Group in Organic Syntheses; Wiley-VCH: New York, 2001; pp
30ꢀ69. (c) Luzzio, F. A. Tetrahedron 2001, 57, 915–945. (d) Palomo,
C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007, 2561–2574.
(27) (a) Mayr, H.; Gorath, G. J. Am. Chem. Soc. 1995, 117, 7862–7868.
(b) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66–77.
(28) The observation that the noncatalyzed reaction of 2-methylin-
dole with p-nitrobenzaldehyde occurs at 90 °C in alcohols and water but
not in aprotic solvents, such as DMSO or DMF, illustrates the increase of
the electrophilicities of aldehydes in protic solvents: He, F.; Li, P.; Gu, Y.;
Li, G. Green Chem. 2009, 11, 1767–1773.
(29) For selected references, see: (a) Schleyer, P. v. R.; Jemmis, E. D.;
Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393–6394. (b) Richard,
J. P.; Amyes, T. L.; Rice, D. J. J. Am. Chem. Soc. 1993, 115, 2523–2524.
8250
dx.doi.org/10.1021/ja200820m |J. Am. Chem. Soc. 2011, 133, 8240–8251