S. Naskar et al. / Polyhedron 35 (2012) 77–86
85
3.4. Electrochemistry
by Fundació Catalana per a la Recerca (FCR) and the Universitat de
Barcelona.
In the cyclic voltammetry experiments, the free ligand
dmoTSCH2 shows no redox activity up to 1.0 V (versus Ag/AgCl)
in DMSO with a Pt electrode. On the cathodic side, a quasi-revers-
Appendix A. Supplementary data
ible response is obtained at ꢁ0.81 V (
DEp = 280 mV). In the corre-
CCDC 800029 and 800031 contain the supplementary crystallo-
graphic data for dmoPhTSCH2 and [Cu(dmoTSCH)Cl]2ꢀH2O
(1ꢀH2O), respectively. These data can be obtained free of charge
Cambridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: depos-
it@ccdc.cam.ac.uk. Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
sponding Zn(II) complex, we could detect no oxidative response
up to 1.0 V, but an irreversible reductive response is observed at
ꢁ0.85 V. Very similar behavior is observed with the dmoPhTSCH2
ligand.
The Cu(II) complex 1ꢀH2O in DMSO solution shows a Cu(III)/
Cu(II) couple at 0.28 V (180 mV); two reductive peaks observed
at ꢁ0.30 V (300 mV) and ꢁ1.13 V are assigned to the Cu(II)/Cu(I)
couple and a ligand based reduction, respectively (Supplementary
Figs. 5 and 6). The complex 2 in DMSO solution shows the Cu(III)/
Cu(II) couple at 0.28 V (248 mV), while on the reductive side the
Cu(II)/Cu(I) couple is observed at ꢁ0.26 (260 mV) and the ligand
based reduction at ꢁ0.65 (100) V (Supplementary Fig. 7). It has
been pointed out that Cu(II) thiosemicarbazone complexes having
a reversible Cu(II)/Cu(I) potential around ꢁ0.5 to ꢁ0.6 V are hypox-
ia selective, and hence may be used as imaging agents of hypoxic
tissues [15,16]. The E0 values of the Cu(II)/Cu(I) couple of our com-
plexes are more positive than the specified range mentioned above
and hence they are not expected to show hypoxia selectivity.
References
[1] J.A. McCleverty, T.J. Meyer (Series Eds.), Comprehensive Coordination
Chemistry-II, vol. 8, in: L. Que, Jr., W.B. Tolman (Eds.), Elsevier, Amsterdam,
2005 (Chapters 8.1, 8.4, 8.17).
[2] M.J.M. Campbell, Coord. Chem. Rev. 15 (1975) 279.
[3] S. Padhye, G.B. Kauffman, Coord. Chem. Rev. 63 (1985) 127.
[4] D.X. West, S.B. Padhye, P.B. Sonowane, Struct. Bond. 76 (1991) 1.
[5] D.X. West, A.E. Liberta, S.B. Chikate, P.B. Sonowane, A.S. Kumbhar, R.G. Yerande,
Coord. Chem. Rev. 123 (1993) 49.
[6] T.S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009) 977.
[7] S.K. Chattopadhyay, in: D.B. Watson (Ed.), Ruthenium: Properties, Production
and Applications, Nova Publishers, 2011, pp. 293–310.
3.5. Electronic spectra
[8] D.H. Petering, Bioinorg. Chem. 1 (1972) 255.
[9] M. Christlieb, H.S.R. Struthers, P.D. Bonnitcha, A.R. Cowley, J.R. Dilworth,
Dalton Trans. (2007) 5043.
[10] H.G. Petering, H.H. Buskirk, G.B. Underwood, Cancer Res. 24 (1964) 367.
[11] D.H. Petering, in: H. Sigel (Ed.), Metal Ions in Biological Systems, Marcel
Dekker, New York, 1980, pp. 197–229.
[12] J.P. Holland, J.C. Green, J.R. Dilworth, Dalton Trans. (2006) 783.
[13] A.R. Cowley, J.R. Dilworth, P.S. Donnelly, A.D. Gee, J.M. Heslop, Dalton Trans.
(2004) 2404.
The Cu(II) complexes show a weak band/shoulder around
600 nm, assigned to d–d transitions [19,52]. They also show a li-
gand to metal charge transfer transition at around 400 nm. An-
other band in the 300–350 nm region is due to an intraligand
transition (Supplementary Figs. 8 and 9).
[14] J.L.J. Dearling, J.S. Lewis, D.W. McCarthy, M.J. Welch, P.J. Blower, Chem.
Commun. (1998) 2531.
[15] J.L.J. Dearling, J.S. Lewis, G.E.D. Mullen, M.J. Welch, P.J. Blower, J. Biol. Inorg.
Chem. 7 (2002) 249.
4. Conclusion
[16] A.R. Cowley, J.R. Dilworth, P.S. Donnelly, E. Labisbal, A. Sousa, J. Am. Chem. Soc.
124 (2002) 5270.
[17] P. Gómez-Saiz, J. Garcia-Torjal, M.A. Maestro, J. Mahía, F.J. Arnaiz, L. Lezama, T.
Rojo, Eur. J. Inorg. Chem. (2003) 2639.
[18] J. Garcia-Torjal, M.K. Urtiaga, R. Cortés, L. Lezama, T. Rojo, M.I. Arriortua, J.
Chem. Soc., Dalton Trans. (1994) 2233.
[19] J. Garcia-Torjal, L. Lezama, J.L. Pizarro, M. Insausti, M.I. Arriortua, T. Rojo,
Polyhedron 18 (1999) 3703.
[20] S. Ghosh, P.K. Ray, S.R. Saha, A.P. Koley, Ind. J. Chem. 23A (1984) 745.
[21] S.K. Chattopadhyay, D. Chattopadhyay, T. Banerjee, R. Kuroda, S. Ghosh,
Polyhedron 16 (1997) 1925.
[22] A.K. Das, S. Seth, S.K. Chattopadhyay, Z. Kristallogr. 215 (2000) 481.
[23] S. Naskar, D. Mishra, R.J. Butcher, S.K. Chattopadhyay, Polyhedron 26 (2007)
3703.
We have shown that diacetyl monooxime thiosemicarbazones
are versatile ligands, capable of forming extended networks
through hydrogen bonding which can act as a conduit for transmit-
ting magnetic exchange interactions. With Cu(II) they form thiola-
to bridged dinuclear complexes, where each Cu(II) is in a 4+1
coordination environment. The magnetic behavior of such com-
plexes are shown to be a combined effect of intramolecular super-
exchange and intermolecular interactions through various types of
hydrogen bonds. The possible substitution of chloride by other
monodentate ligands, which will alter the hydrogen bonding pat-
tern and hence the intermolecular interactions, as well as the intra-
molecular superexchange (which depends on the electronegativity
of the donor atom X, vide supra) are now being explored in our
laboratory.
[24] S. Sreerama, S. Pal, Inorg. Chem. 41 (2002) 4843.
[25] D. Datta, A. Chakravorty, Inorg. Chem. 21 (1982) 363.
[26] S. Ross, T. Weyhermüller, E. Bill, E. Bothe, U. Flörke, K. Wieghardt, P. Chaudhuri,
Eur. J. Inorg. Chem. (2004) 984.
[27] S. Wan, W. Mori, S. Yamada, S.I. Murahashi, Bull. Chem. Soc. Jpn. 62 (1989) 435.
[28] V.Y. Kukuskin, T. Nishioka, D. Tudela, K. Isobe, I. Kinoshita, Inorg. Chem. 36
(1997) 6157.
Acknowledgments
[29] R.S. Bendre, R.J. Butcher, A.S. Kuwar, Acta Crystallogr., Sect. E 61 (2005) o3511.
[30] H. Muhonen, Inorg. Chem. 25 (1986) 4692.
[31] E. Escrivà, J.S. Carrió, J.G. Lozano, J.-V. Folgado, F. Sapiña, L. Lezama, Inorg.
Chim. Acta 279 (1998) 58.
[32] P.A. Goodson, J. Glerup, D.J. Hodgson, K. Michelsen, U. Rychlewska, Inorg.
Chem. 33 (1994) 359.
[33] D.T. Sawyer, A. Sobkowiak, J.L. Roberts Jr., Electrochemistry for Chemists,
second ed., John Wiley and Sons, New York, 1995. p. 333.
[34] A.K. Nandi, S. Chaudhuri, S.K. Majumder, S. Ghosh, Acta Crystallogr., Sect. C 40
(1984) 1193.
[35] G.M. Sheldrick, SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB], Program for
Crystal Structure Analysis (Release 97-2), Göttingen, Germany, 1998.
[36] E. Ruiz, Struct. Bond. 113 (2004) 71.
[37] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, H. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E.; Knox, H.P.
SKC thanks AICTE, UGC and CSIR for financial assistance. Sumita
thanks CSIR for a SRF. SKC also thanks Mr. Manas Ghosh for doing a
part of the work during his PG project. We also acknowledge AICTE
for funding the purchase of a CH1106A potentiostat. The infra-
structural facility created in our department through DST-FIST,
UGC-SAP and a MHRD special grant is also thankfully acknowl-
edged. M. Corbella thanks the Ministerio de Educación y Ciencia
(CTQ2009-07264/BQU and CTQ2008-06670C02-01/BQU) and to
the Comissió Interdepartamental de Recerca i Innovació Tecnològ-
ica de la Generalitat de Catalunya (CIRIT) (2009-SGR1454 and
2009SGR1459) for financial support. J. Tercero is grateful to the
Centre de Computació de Catalunya (CESCA) with a grant provided