self-assembly serves as a reliable scaffold for the arrangement of
the Au(I) isonitrile moieties. Studies on the application of the
G-octamer induced metal ion aggregates including functional
materials and catalysts are now in progress.
The author X. M. expresses special thanks for the Global COE
(center of excellence) Program ‘‘Global Education and Research
Center for Bio-Environmental Chemistry’’ of Osaka University.
This work was supported by Grant-in-Aids for Science Research
on Innovative Areas (No. 22108516 and 21111512) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan. Thanks are also due to the Analytical Center, Graduate
School of Engineering, Osaka University.
Fig. 5 UV-vis spectra of 1 in the absence (red line) and presence
(blue line) of KPF6 (0.125 eq.) in CHCl3.
Notes and references
1 (a) Bioorganometallics: Biomolecules, labeling, Medicine, ed.
G. Jaouen, Wiley-VCH, Weinheim, 2006 and references therein;
(b) R. H. Fish and G. Jaouen, Organometallics, 2003, 22, 2166;
(c) K. Severin, R. Bergs and W. Beck, Angew. Chem., Int. Ed.,
1998, 37, 1634.
2 (a) A. Nomoto, T. Moriuchi, S. Yamazaki, A. Ogawa and
T. Hirao, Chem. Commun., 1998, 1963; (b) T. Moriuchi,
A. Nomoto, K. Yoshida, A. Ogawa and T. Hirao, J. Am. Chem.
Soc., 2001, 123, 68; (c) T. Moriuchi, T. Nagai and T. Hirao, Org.
Lett., 2005, 7, 5265; (d) T. Moriuchi and T. Hirao, Acc. Chem.
Res., 2010, 43, 1040.
3 (a) J. T. Davis and G. P. Spada, Chem. Soc. Rev., 2007, 36, 296;
(b) J. T. Davis, Angew. Chem., Int. Ed., 2004, 43, 668; (c) S. Lena,
S. Masiero, S. Pieraccini and G. P. Spada, Mini-Rev. Org. Chem.,
´
2008, 5, 262; (d) C. Aime, R. Nishiyabu, R. Gondo, K. Kaneko
and N. Kimizuka, Chem. Commun., 2008, 6534.
Fig. 6 Emission spectra of 1 in the absence (red line) and presence
(blue line) of KPF6 (0.125 eq.) in CHCl3 ((a) lex = 380 nm;
(b) lex = 440 nm).
4 (a) S. Masiero, G. Gottarelli and S. Pieraccini, Chem. Commun.,
2000, 1995; (b) S. Martic, X. Liu, S. Wang and G. Wu, Chem.–Eur.
´
J., 2008, 14, 1196; (c) S. Pieraccini, S. Bonacchi, S. Lena,
S. Masiero, M. Montalti, N. Zaccheroni and G. P. Spada, Org.
Biomol. Chem., 2010, 8, 774; (d) G. P. Spada, S. Lena, S. Masiero,
S. Pieraccini, M. Surin and S. Samorı, Adv. Mater., 2008, 20, 2433;
(e) D. Gonzalez-Rodrıguez, P. G. A. Janssen, R. Martın-Rapu´ n,
´ ´ ´
I. De Cat, S. De Feyter, A. P. H. J. Schenning and E. W. Meijer,
J. Am. Chem. Soc., 2010, 123, 4710.
5 (a) H. Schmidbaur, Chem. Soc. Rev., 1995, 24, 391; (b) P. Pyykko,
¨
Chem. Rev., 1997, 97, 597; (c) M. J. Katz, K. Sakai and
D. B. Leznoff, Chem. Soc. Rev., 2008, 37, 1884;
(d) H. Schmidbaur and A. Schier, Chem. Soc. Rev., 2008, 37, 1931.
6 (a) V. W.-W. Yam, C.-K. Li and C.-L. Chan, Angew. Chem., Int.
Ed., 1998, 37, 2857; (b) X. He, E. C.-C. Cheng, N. Zhu and
V. W.-W. Yam, Chem. Commun., 2009, 4016; (c) H. Ito,
T. Saito, N. Oshima, N. Kitamura, S. Ishizaka, Y. Hinatsu,
M. Wakeshima, M. Kato, K. Tsuge and M. Sawamura, J. Am.
Chem. Soc., 2008, 130, 10044; (d) X. He and V. W.-W. Yam, Inorg.
Chem., 2010, 49, 2273; (e) T. Moriuchi, K. Yoshi, C. Katano and
T. Hirao, Chem. Lett., 2010, 841; (f) T. Moriuchi, K. Yoshi,
C. Katano and T. Hirao, Tetrahedron Lett., 2010, 51, 4030.
7 J. L. Sessler, M. Sathiosatham, C. T. Brown, T. A. Rhodes and
G. Wiederrecht, J. Am. Chem. Soc., 2001, 123, 3655.
8 F. Maya and J. M. Tour, Tetrahedron, 2004, 60, 81.
9 C. P. McArdle, S. Van, M. C. Jennings and R. J. Puddephatt,
J. Am. Chem. Soc., 2002, 124, 3959.
10 M. Nikan and J. C. Sherman, Angew. Chem., Int. Ed., 2008, 47,
4900.
11 S. Lena, P. Neviani, S. Masiero, S. Pieraccini and G. P. Spada,
Angew. Chem., Int. Ed., 2010, 49, 3657.
12 In addition, analysis of the sample by CSI-TOF MS yielded the
Fig. 7 A possible diagram showing the formation of Au(I)–Au(I)
interaction upon addition of KPF6.
in the presence and in the absence of KPF6 revealed that the
low-energy and the high-energy bands are derived from
different excited state origins (Fig. S1, ESIw). The excitation
spectrum showed a weak low-energy shoulder at 440 nm in the
presence of KPF6 (Fig. S1, ESIw), which coincides with the
new absorption band at about 400–450 nm in the UV-vis
spectrum resulting from the Au(I)–Au(I) interaction. Upon
addition of KPF6, the sandwich-like octamer was formed,
thereby bringing the two quartets containing Au(I) centers
into close proximity (Fig. 7). On the basis of related literature,
the distance between the two quartets might be about 3.3 A,3
which is suitable for the overlap of the orbital on each Au(I)
atom. Therefore, the low energy emission band at 510 nm is
considered to be attributed to the Au(I)–Au(I) interaction.6
In conclusion, a bioorganometallic Au(I) complex possessing
the guanosine moiety was designed and synthesized. The designed
guanosine-based Au(I) isonitrile complex was demonstrated to
form the quartet and octamer in the absence and presence of a
potassium ion, respectively, exhibiting a switchable emission
based on Au(I)–Au(I) interaction, wherein the G-octamer via
spectra with
a peak m/z = 4122 that matched the mass
[18+2Na]2+ in CHCl3, which may be due to cation exchange
during sample preparation and analysis. M. S. Kaucher and
J. T. Davis, Tetrahedron Lett., 2006, 47, 6381.
13 (a) D. M. Gray, J. D. Wen, C. W. Gray, R. Repges, C. Repges,
G. Raabe and J. Fleishhauer, Chirality, 2008, 20, 431;
(b) G. Gottarelli, S. Masiero and G. P. Spada, Enantiomer, 1998,
3, 429; (c) G. Gottarelli, S. Lena, S. Masiero, S. Pieraccini and
G. P. Spada, Chirality, 2008, 20, 471.
c
4684 Chem. Commun., 2011, 47, 4682–4684
This journal is The Royal Society of Chemistry 2011