Job/Unit: O43672
/KAP1
Date: 09-02-15 12:56:18
Pages: 8
T. Tamura, K. Moriyama, H. Togo
FULL PAPER
5-Methyl-2-allyloxybenzonitrile (2x): Yield 102.1 mg (59%), oil. IR
Acknowledgments
(chloroform): ν = 2226 cm–1. 1H NMR (400 MHz, CDCl3): δ =
˜
2.29 (s, 3 H), 4.61–4.64 (m, 2 H), 5.32 (dq, J = 10.8, 1.2 Hz, 1 H),
5.47 (dq, J = 17.6, 1.6 Hz, 1 H), 5.98–6.05 (m, 1 H), 6.84 (d, J =
8.4 Hz, 1 H), 7.27 (dd, J = 8.4, 2.2 Hz, 1 H), 7.34 (d, J = 2.2 Hz,
1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 20.0, 69.4, 101.8,
112.5, 116.5, 118.0, 130.4, 132.0, 133.7, 134.8, 158.2 ppm. HRMS
(APCI): calcd. for C11H12ON [M + H]+ 174.0911; found 174.0913.
Financial support in the form of a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Culture, Sports, Science,
and Technology in Japan (No. 25105710), and also from the Iodine
Research Project in Chiba University is gratefully acknowledged.
[1] a) S. R. Sandler, W. Karo, Nitriles (Cyanides), in: Organic
Functional Group Preparations (Ed.: H. H. Wasserman), Aca-
demic Press, Inc., San Diego, 1983, vol. 12-I, chapter 17; b)
M. E. Fabiani, Drug News Perspect. 1999, 12, 207–215; c) J.
Kim, H. J. Kim, S. Chang, Angew. Chem. Int. Ed. 2012, 51,
11948–11959; Angew. Chem. 2012, 124, 12114–12125; d) F. F.
Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, J.
Med. Chem. 2010, 53, 7902–7919.
3-Cyanobenzothiophene (2y): Yield 130.5 mg (82%), solid, m.p. 72–
73 °C. IR (chloroform): ν = 2227 cm–1. 1H NMR (400 MHz,
˜
CDCl3): δ = 7.48 (t, J = 7.2 Hz, 1 H), 7.54 (t, J = 7.2 Hz, 1 H),
7.91 (d, J = 8.2 Hz, 1 H), 8.00 (d, J = 8.2 Hz, 1 H), 8.11 (s, 1 H)
ppm. 13C NMR (125 MHz, CDCl3): δ = 107.0, 114.2, 122.5, 122.8,
125.9, 126.1, 137.2, 137.5, 138.4 ppm. HRMS (APCI): calcd. for
C9H6NS [M + H]+ 160.0213; found 160.0215.
[2] a) K. Friedrick, K. Wallensfels, in: The Chemistry of the Cyano
Group (Ed.: Z. Rappoport), Wiley-Interscience, New York,
1970; b) M. North, in: Comprehensive Organic Functional
Group Transformation (Eds.: A. R. Katritzky, O. Meth-Cohn,
C. W. Rees), Pergamon, Oxford, UK, 1995; c) S.-I. Murahashi,
Synthesis from Nitriles with Retention of the Cyano Group, in:
Science of Synthesis vol. 19, Thieme, Stuttgart, Germany, 2004,
p. 345–402; d) S. J. Collier, P. Langer, Application of Nitriles as
Reagents for Organic Synthesis with Loss of the Nitrile Func-
tionality, in: Science of Synthesis vol. 19, Thieme, Stuttgart,
Germany, 2004, p. 403–425; e) J. B. Medwid, R. Paul, J. S.
Baker, J. A. Brockman, M. T. Du, W. A. Hallett, J. W. Hanifin,
R. A. Hardy Jr., M. E. Tarrant, L. W. Torley, S. Wrenn, J. Med.
Chem. 1990, 33, 1230–1241; f) G. D. Diana, D. Cutcliffe, D. L.
Volkots, J. P. Mallamo, T. R. Bailey, N. Vescio, R. C. Oglesby,
T. J. Nitz, J. Wetzel, V. Giranda, D. C. Pevear, F. J. Dutko, J.
Med. Chem. 1993, 36, 3240–3250; g) S. J. Wittenberger, B. G.
Donner, J. Org. Chem. 1993, 58, 4139–4141; h) P. Wipf, Chem.
Rev. 1995, 95, 2115–2134; i) M. Chihiro, H. Nagamoto, I. Take-
mura, K. Kitano, H. Komatsu, K. Sekiguchi, F. Tabusa, T.
Mori, M. Tominaga, Y. Yabuuchi, J. Med. Chem. 1995, 38,
353–358; j) I. K. Khanna, R. M. Weier, Y. Yu, X. D. Xu, F. J.
Koszyk, P. W. Collins, C. M. Koboldt, A. W. Veenhuizen, W. E.
Perkins, J. J. Casler, J. L. Masferrer, J. Y. Zhang, S. A. Gregory,
K. Seibert, P. C. Isakson, J. Med. Chem. 1997, 40, 1634–1647;
k) P. Wipf, F. Yokokawa, Tetrahedron Lett. 1998, 39, 2223–
2226; l) X. Gu, X. Wan, B. Jiang, Bioorg. Med. Chem. Lett.
1999, 9, 569–572; m) P. C. Ducept, S. P. Marsden, Synlett 2000,
692–694; n) J.-J. Shie, J.-M. Fang, J. Org. Chem. 2003, 68, 1158–
1160.
1-Methyl-3-cyanoindole (2z): Yield 101.5 mg (65%), oil. IR (chloro-
1
form): ν = 2219 cm–1. H NMR (400 MHz, CDCl ): δ = 3.83 (s, 3
˜
3
H), 7.27–7.44 (m 3 H), 7.58 (s 1 H), 7.75 (d, J = 7.6 Hz, 1 H) ppm.
13C NMR (125 MHz, CDCl3): δ = 33.5, 85.3, 110.2, 115.8, 119.7,
122.0, 120.7, 127.6, 135.4, 135.9 ppm. HRMS (APCI): calcd. for
C10H9N2 [M + H]+ 157.0757; found 157.0760.
tert-Butyl 2-(3Ј-Cyano-4Ј-isobutoxyphenyl)-4-methylthiazole-5-carb-
oxylate (3): A glass vessel containing a magnetic stirrer bar,
Ni(OAc)2·4H2O (0.2 mmol, 50.6 mg), and MgSO4 (2.0 mmol,
240.6 mg) was dried under vacuum with a heat gun, and was then
filled with argon gas after cooling to room temperature. 2,2Ј-Bi-
pyridyl (0.2 mmol, 31.3 mg), 5-bromo-2-isobutoxybenzonitrile
(1.0 mmol, 253.0 mg) or 5-iodo-2-isobuthoxybenzonitrile (1.0 mmol,
301.0 mg), tert-butyl 4-methylthiazole-5-carboxylate (2.0 mmol,
398.6 mg), LiOtBu (5.0 mmol, 400.0 mg), and dry dioxane (6.0 mL)
were added to the vessel at room temperature, and the resulting
mixture was stirred for 40 h at reflux. The mixture was allowed to
cool to room temperature, then it was passed through a short pad
of silica gel, which was washed wth EtOAc. The filtrate was concen-
trated, and the residue was purified by preparative TLC (3ϫ;
EtOAc/hexane, 1:6) to give compound 3 (197.2 mg, 53% from 2v;
or 223.2 mg, 60% from 2w) as a solid, m.p. 108–110 °C. IR (chloro-
1
form): ν = 1712 cm–1. H NMR (400 MHz, CDCl ): δ = 1.09 (d, J
˜
3
= 6.8 Hz, 6 H), 1.59 (s, 9 H), 2.18–2.23 (m, 1 H), 2.73 (s, 3 H), 3.89
(d, J = 6.8 Hz, 2 H), 7.00 (d, J = 8.9 Hz, 1 H), 8.08 (dd, J = 8.9,
2.3 Hz, 1 H), 8.17 (d, J = 2.3 Hz, 1 H) ppm. 13C NMR (125 MHz,
CDCl3): δ = 17.3, 19.0, 28.1, 28.2, 75.6, 82.5, 102.8, 112.5, 115.4,
123.7, 126.1, 131.9, 132.4, 160.1, 161.3, 162.3, 166.5 ppm.
[3] a) R. C. Larock, Nitriles, Carboxylic Acids and Derivatives, in:
Comprehensive Organic Transformations, 2nd ed., Wiley, New
York, 1999, p. 1621–1996; b) K. Ouchaou, D. Georgin, F. Ta-
ran, Synlett 2010, 2083–2086.
[4] T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1884, 17, 1633, 2650–
2653.
[5] a) K. W. Rosenmund, E. Struck, Ber. Dtsch. Chem. Ges. 1916,
52, 1749–1756; b) J. von Braun, G. Manz, Justus Liebigs Ann.
Chem. 1931, 488, 111–126; c) C. F. Koelsch, A. G. Whitney, J.
Org. Chem. 1941, 6, 795–803; d) J. X. Wu, B. Beck, R. X. Ren,
Tetrahedron Lett. 2002, 43, 387–389.
Febxostat: CF3COOH (5.0 mL) was added to a solution of
2-(3Ј-cyano-4Ј-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (3;
0.5 mmol, 186.1 mg) in dry CH2Cl2 (5.0 mL). The mixture was
stirred for 18 h at room temperature. Then the solvent was removed
under reduced pressure, toluene (3ϫ 3.0 mL) was added to the resi-
due, the toluene was removed under reduced pressure, and finally
[6] For recent reviews, see: a) S. Sundermeier, A. Zapf, M. Beller,
Eur. J. Inorg. Chem. 2003, 3513–3526; b) P. Anbarasan, T.
Schareina, M. Beller, Chem. Soc. Rev. 2011, 40, 5049–5067; for
articles, see: c) Z. Iqbal, A. Lyubimtsev, M. Hanack, Synlett
2008, 2287–2290; d) G. Chen, J. Weng, Z. Zheng, X. Zhu, Y.
Cai, J. Cai, Y. Wan, Eur. J. Org. Chem. 2008, 3524–3528; e) T.
Schareina, A. Zapf, A. Cotte, N. Müller, M. Beller, Synthesis
2008, 3351–3355; f) F. G. Buono, R. Chidambaram, R. H.
Mueller, R. E. Waltermire, Org. Lett. 2008, 10, 5325–5328; g)
K. Chattopadhyay, R. Dey, B. C. Ranu, Tetrahedron Lett. 2009,
50, 3164–3167; h) G. Yan, C. Kuang, Y. Zhang, J. Wang, Org.
Lett. 2010, 12, 1052–1055; i) C. DeBlase, N. E. Leadbeater, Tet-
rahedron 2010, 66, 1098–1101; j) P. Y. Yeung, C. P. Tsang, F. Y.
filtration with hexane gave febuxostat (147.0 mg, 93%) as a solid,
1
m.p. 205–208 °C. IR (chloroform): ν = 1688, 2230, 2961 cm–1. H
˜
NMR (500 MHz, CDCl3): δ = 1.09 (d, J = 6.7 Hz, 6 H), 2.18–2.23
(m, 1 H), 2.79 (s, 3 H), 3.90 (d, J = 6.7 Hz, 2 H), 7.02 (d, J =
8.9 Hz, 1 H), 8.08 (dd, J = 8.9, 2.3 Hz, 1 H), 8.16 (d, J = 2.3 Hz,
1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 17.62, 19.01, 28.12,
75.69, 102.93, 112.62, 115.28, 125.64, 128.18, 128.99, 132.14,
132.68, 162.64, 162.85, 168.50 ppm.
Supporting Information (see footnote on the first page of this arti-
1
cle): Copies of the H and 13C NMR spectra for all the aromatic
nitriles and febuxostat.
6
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0