LETTER
Synthesis of Hydrazines from N-Alkylanilines
571
12, 1928. (c) Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2009,
131, 6082. (d) Hull, K. L.; Lanni, E. L.; Sanford, M. S.
J. Am. Chem. Soc. 2006, 128, 14047. (e) Matsushita, M.;
Kamata, K.; Yamaguchi, K.; Mizuno, N. J. Am. Chem. Soc.
2005, 127, 6632. (f) Masui, K.; Ikegami, H.; Mori, A. J. Am.
Chem. Soc. 2004, 126, 5074. (g) Takahashi, M.; Masui, K.;
Sekiguchi, H.; Kobayashi, N.; Mori, A.; Funahashi, M.;
Tamaoki, N. J. Am. Chem. Soc. 2006, 128, 10930.
(h) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.;
Mizuno, N. Angew. Chem. Int. Ed. 2008, 47, 2407. (i) Oi,
S.; Sato, H.; Sugawara, S.; Inoue, Y. Org. Lett. 2008, 10,
1823. (j) Oishi, T.; Katayama, T.; Yamaguchi, K.; Mizuno,
N. Chem. Eur. J. 2009, 15, 7539.
A possible mechanism for the direct synthesis of hydra-
zine 2 from N-alkylaniline 1 is depicted in Scheme 3. Ini-
tially, Cu(I) complex A is oxidized to peroxo-dicopper(II)
complex B by air.15 Then, the dicopper(II) complex B is
subjected to nucleophilic attack by N-alkylaniline 1 to
generate diamino complex C, followed by reductive elim-
ination to give the hydrazine 2. A successive oxidation of
copper(0) complex D to copper(I) complex A completes a
catalytic cycle. The presence of CuO in the reaction sys-
tem may promote the decomposition of dicopper(II) com-
plex B, facilitating the attack of N-alkylaniline 1.12
(3) For representative papers on the synthesis of disulfides by
dehydrogenative homocoupling reactions, see:
L CIu
O2
in air
2
X
n
(a) Arterburn, J. B.; Perry, M. C.; Nelson, S. L.; Dible, B. R.;
Holguin, M. S. J. Am. Chem. Soc. 1997, 119, 9309.
(b) Singh, D.; Galetto, F. Z.; Soares, L. C.; Rodrigues, O. E.
D.; Braga, A. L. Eur. J. Org. Chem. 2010, 14, 2661.
(c) Banfield, S. C.; Omori, A. T.; Leisch, H.; Hudlicky, T.
J. Org. Chem. 2007, 72, 4989. (d) Choi, J.; Yoon, N. M.
J. Org. Chem. 1995, 60, 3266. (e) Ramesha, A. R.;
Chamedarsekran, S. J. Org. Chem. 1994, 59, 1354.
(4) (a) Rosenberg, L.; Davis, C. W.; Yao, J.-Z. J. Am. Chem.
Soc. 2001, 123, 5120. (b) Braunstein, P.; Morise, X. Chem.
Rev. 2000, 100, 3541.
A
O2
in air
O
II
II
0
B
LnCu
CuLn
LnCu
D
O
+ base
4 ArRNH
NRAr
NRAr
II
1
L Cu
n
2
ArRNNRAr
H2O
C
2
(5) (a) Kajimoto, T.; Takahashi, H.; Tsuji, J. Bull. Chem. Soc.
Jpn. 1982, 55, 3673. (b) For an excellent report on copper-
catalyzed dehydrogenative coupling of anilines leading to
azo compounds, see: Zhang, C.; Jiao, N. Angew. Chem. Int.
Ed. 2010, 49, 6174.
Scheme 3 Proposed mechanism for the copper-catalyzed oxidative
dehydrogenative homocoupling of N-alkylanilines
In summary, we have developed a copper-catalyzed N–N
bond-forming reaction by the direct dehydrogenative ho-
mocoupling of N-alkylanilines, furnishing N,N¢-dialkyl-
N,N¢-diphenylhydrazines 2a–l in 72–88% yields. This
new strategy has the advantages of using air as oxidant,
direct synthesis from N-alkylanilines, convenient manip-
ulations, mild reaction conditions and good yields. A pos-
sible mechanism by coordination and reductive
elimination has also been proposed. Further studies on the
mechanism and extension of the copper-catalyzed oxida-
tive dehydrogenative homocoupling are currently under-
way.
(6) (a) Hydrazine and Its Derivatives, In Kirk-Othmer
Encyclopedia of Chemical Technology, Vol. 13, 4th ed.;
Wiley: New York, 1995. (b) Encyclopedia of Reagents for
Organic Synthesis; Paquette, L. A., Ed.; Wiley: Chichester,
1995. (c) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205.
(7) (a) Han, H.; Janda, K. D. J. Am. Chem. Soc. 1996, 118,
2539. (b) Zhang, R.; Durkin, J. P.; Windsor, W. T. Bioorg.
Med. Chem. Lett. 2002, 12, 1005. (c) Lee, T.-W.; Cherney,
M. M.; Huitema, C.; Liu, J.; James, K. E.; Powers, J. C.;
Eltis, L. D.; James, M. N. G. J. Mol. Biol. 2005, 353, 1137.
(8) For representative papers for the synthesis of hydrazines
from the compounds containing N–N or N=N bonds, see:
(a) Bredihhin, A.; Groth, U. M.; Maeorg, U. Org. Lett. 2007,
9, 1097. (b) Kisseljova, K.; Tsubrik, O. Org. Lett. 2006, 8,
43. (c) Bredihhin, A.; Maeorg, U. Org. Lett. 2007, 9, 4975.
(d) Maeorg, U.; Grehn, L.; Ragnarsson, U. Angew. Chem.
Int. Ed. 1996, 35, 2626. (e) Rosamilia, A. E.; Aricò, F.;
Tundo, P. J. Org. Chem. 2008, 73, 1559. (f) Tsubrik, O.;
Maeorg, U. Org. Lett. 2001, 3, 2297. (g) Alberti, A.; Canè,
F.; Dembech, P.; Lazzari, D.; Ricci, A.; Seconi, G. J. Org.
Chem. 1996, 61, 1677. (h) Brosse, N.; Pinto, M.-F.;
Bodiguel, J.; Jamart-Gregoire, B. J. Org. Chem. 2001, 66,
2869. (i) Grehn, L.; Lohn, H.; Ragnarsson, U. Chem.
Commun. 1997, 15, 1381. (j) Brosse, N.; Pinto, M.-F.;
Jamart-Gregoire, B. J. Org. Chem. 2000, 65, 4370.
(k) Maeorg, U.; Ragnarsson, U. Tetrahedron Lett. 1998, 39,
681. (l) Maeorg, U.; Pehk, T.; Ragnarsson, U. Acta Chem.
Scand. 1999, 53, 1127. (m) Bredihhin, A.; Maeorg, U.
Tetrahedron 2008, 64, 6788. (n) Tsubrik, O.; Maeorg, U.;
Sillard, R.; Ragnarsson, U. Tetrahedron 2004, 60, 8363.
(9) Vidal, J.; Hannachi, J.-C.; Hourdin, G.; Mulatier, J.-C.;
Collet, A. Tetrahedron Lett. 1998, 39, 8845.
Supporting Information for this article is available online at
Acknowledgment
Financial supports from the National Natural Science Foundation of
China (No. 20872059 and 21072091) and MOST of China (973 pro-
gram 2011CB808600) are gratefully acknowledged.
References and Notes
(1) For recent reviews on oxidative cross-dehydrogenative-
coupling, see: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(b) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436.
(c) Zhang, M. Adv. Synth. Catal. 2009, 351, 2243.
(2) For representative papers on oxidative dehydrogenative
homocouplings for the formation of C–C bonds, see:
(a) Truong, T.; Alvarado, J.; Tran, L. D.; Daugulis, O. Org.
Lett. 2010, 12, 1200. (b) Chen, Q.-A.; Dong, X.; Chen,
M.-W.; Wang, D.-S.; Zhou, Y.-G.; Li, Y.-X. Org. Lett. 2010,
(10) Huddleston, P. R.; Coutts, G. C. Comprehensive Organic
Functional Group Transformations, Vol. 2; Katritzky, A. R.;
Meth-Cohn, O.; Rees, C. W., Eds.; Pergamon/Elsevier:
Oxford, 1995, 371–383.
Synlett 2011, No. 4, 569–572 © Thieme Stuttgart · New York