8 (a) K. Mani, B. Havsmark, S. Persson, Y. Kaneda, H. Yamamoto,
K. Sakurai, S. Ashikari, H. Habuchi, S. Suzuki, K. Kimata,
A. Malmstrom, G. Westergren-Thorsson and L.-A. Fransson,
¨
Cancer Res., 1998, 58, 1099–1104; (b) K. Mani, M. Belting,
U. Ellervik, N. Falk, G. Svensson, S. Sandgren, F. Cheng and
L.-A. Fransson, Glycobiology, 2004, 14, 387–397.
9 M. Belting, L. Borsig, M. M. Fuster, J. R. Brown, L. Persson,
L.-A. Fransson and J. D. Esko, Proc. Natl. Acad. Sci. U. S. A.,
2002, 99, 371–376.
10 (a) M. Jacobsson, U. Ellervik, M. Belting and K. Mani, J. Med.
Chem., 2006, 49, 1932–1938; (b) R. Johnsson, K. Mani and
U. Ellervik, Bioorg. Med. Chem., 2007, 15, 2868–2877;
(c) F. Cheng, R. Johnsson, J. Nilsson, L.-A. Fransson,
U. Ellervik and K. Mani, Cancer Lett., 2009, 273, 148–154.
11 R. Almeida, S. B. Levery, U. Mandel, H. Kresse, T. Schwientek,
E. P. Bennett and H. Clausen, J. Biol. Chem., 1999, 274,
26165–26171.
12 T. Okajima, K. Yoshida, T. Kondo and K. Furukawa, J. Biol.
Chem., 1999, 274, 22915–22918.
13 J. C. Paulson and K. J. Colley, J. Biol. Chem., 1989, 264,
17615–17618; K. J. Colley, Glycobiology, 1997, 7, 1–13.
14 A quite completed guide to select a method to produce recombi-
Conclusions
In conclusion, we have shown that it is possible to hetero-
logously express the catalytic domain of the human
b-1,4-GalT 7, soluble and stable enough to undertake
in vitro studies with it. This achievement opens the possibility
of developing an easy-to-use method to test the activity as
decoy acceptors of natural and synthetic xylopyranosides.
Since priming the synthesis of GAG is required but not
enough for the antiproliferative activity of the xylosides,10a,b
it is not possible to establish a direct correlation between the
kinetic parameters of the recombinant b-1,4-GalT 7 and the
antiproliferative activity of the different xylopyranosides
tested. On the other hand, preliminary results obtained in
A549 cell line suggest that xylopyranosides 8, 9, 13 and 14
exhibit a promising antiproliferative activity.
nant proteins can be found in: S. Graslund, P. Nordlund and
¨
J. Weigelt, et al., Nat. Methods, 2008, 5, 135–146.
Acknowledgements
15 G. Hannig and S. C. Makrides, Trends Biotechnol., 1998, 16,
54–60; F. Baneyx, Curr. Opin. Biotechnol., 1999, 10, 411–421;
W. Peti and R. Page, Protein Expression Purif., 2007, 51, 1–10;
S. Zerbs, A. M. Frank and F. R. Collart, Methods Enzymol., 2009,
463, 149–168.
16 F. Baneyx, in Manual of industrial microbiology and biotechnology,
ed. in chief A. L. Demain and J. E. Davies, ed. G. Cohen,
C. L. Hershberger, L. J. Forney, I. B. Holland, W.-S. Hu, J.-H.
D. Wu, D. H. Sherman and R. C. Wilson, American Society of
Microbiology, Washington D.C., 2nd edn., 1999, pp. 551–565;
E. G-J. and A. F-M. thank the Spanish Ministerio de Ciencia e
Innovacion (Grants CTQ2007-67403/BQU and CTQ2010-
´
15418) and Comunidad de Madrid (Grant S2009/PPQ-1752)
for financial support. J. C. has been supported by the Spanish
Ministerio de Ciencia e Innovacion (Grant SAF2008-00706)
´
and Generalitat de Catalunya (Grant 2009SGR-1072).
J.F. G-G. was supported by a predoctoral I3P fellowship of
the European Social Fund. We thank Mrs Eva Dalmau for
excellent technical assistance.
A. Bastida, A. Ferna
´
J. C. Carretero and E. Garcı
ndez-Mayoralas, R. G. Arraya
´
´
s, F. Iradier,
a-Junceda, Chem.–Eur. J., 2001, 7,
2390–2397; A. Vera, N. Gonzalez-Montalban, A. Aris and
A. Villaverde, Biotechnol. Bioeng., 2006, 96, 1101–1106;
S. Sahdev, S. K. Khattar and K. S. Saini, Mol. Cell. Biochem.,
2008, 307, 249–264; W. H. Brondyk, Methods Enzymol., 2009, 463,
131–147.
Notes and references
1 For some reviews see: R. L. Jackson, S. J. Busch and A. D. Cardin,
Physiol. Rev., 1991, 71, 481–539; B. Casu and U. Lindahl, Adv.
Carbohydr. Chem. Biochem., 2001, 57, 159–206; R. Sasisekharan,
Z. Shriver, G. Venkataraman and U. Narayanasami, Nat. Rev.
17 A. Mogk, M. P. Mayer and E. Deuerling, ChemBioChem, 2002, 3,
´
807–814; A. Bastida, M. Latorre and E. Garcıa-Junceda, Chem-
BioChem, 2003, 4, 531–533; M. Martınez-Alonso, A. Vera and
´
A. Villaverde, FEMS Microbiol. Lett., 2007, 273, 187–195.
18 D. Esposito and D. K. Chatterjee, Curr. Opin. Biotechnol., 2006,
17, 353–358.
19 F. Daligault, S. Rahuel-Clermont, S. Gulberti, M.-T. Cung,
G. Branlant, P. Netter, J. Magdalou and V. Lattard, Biochem.
J., 2009, 418, 605–614.
20 M. Pasek, E. Boeggeman, B. Ramakrishnan and P. K. Qasba,
Biochem. Biophys. Res. Commun., 2010, 394, 679–684.
21 D. Aoki, H. E. Appert, D. Johnson, S. S. Wong and
M. N. Fukuda, EMBO J., 1990, 9, 3171–3178; P. Wang,
G.-J. Shen, Y.-F. Wang, Y. Ichikawa and C.-H. Wong, J. Org.
Cancer, 2002, 2, 521–528; U. Hacker, K. Nybakken and
¨
N. Perrimon, Nat. Rev. Mol. Cell Biol., 2005, 6, 530–541;
J. R. Bishop, M. Schuksz and J. D. Esko, Nature, 2007, 446,
1030–1037; N. S. Gandhi and R. L. Mancera, Chem. Biol. Drug
Des., 2008, 72, 455–482 and references therein.
2 N. B. Schwartz, Trends Glycosci. Glycotechnol., 1995, 7, 429–445;
J. D. Esko and S. B. Selleck, Annu. Rev. Biochem., 2002, 71,
435–471; J. M. Whitelock and R. V. Iozzo, Chem. Rev., 2005,
105, 2745–2764.
3 (a) M. Okayama, K. Kimata and S. Suzuki, J. Biochem., 1973, 74,
1069–1073; (b) N. B. Schwartz, L. Galligani, P. L. Ho and
A. Dorfman, Proc. Natl. Acad. Sci. U. S. A., 1974, 71,
4047–4051; (c) H. C. Robinson, M. J. Brett, P. J. Tralaggan,
D. A. Lowther and M. Okayama, Biochem. J., 1975, 148, 25–34.
4 S.-F. Kuan, C. J. Byrd, C. Babaum and Y. S. Kim, J. Biol. Chem.,
1989, 264, 19271–19277.
5 A. K. Sarkar, T. A. Fritz, W. H. Taylor and J. D. Esko, Proc. Natl.
Acad. Sci. U. S. A., 1995, 92, 3323–3327; A. K. Sarkar,
K. S. Rostand, R. K. Jain, K. L. Matta and J. D. Esko, J. Biol.
Chem., 1997, 272, 25608–25616; A. K. Sarkar, J. R. Brown and
J. D. Esko, Carbohydr. Res., 2000, 329, 287–300; T. K.-K. Mong,
L. V. Lee, J. R. Brown, J. D. Esko and C.-H. Wong,
ChemBioChem, 2003, 4, 835–840.
´
Chem., 1993, 58, 3985–3990; A. Bastida, A. Fernandez-Mayoralas
and E. Garcıa-Junceda, Bioorg. Med. Chem., 2002, 10, 737–742;
´
J. Egelund, B. L. Petersen, J. S. Motawia, I. Damager, A. Faik,
H. Clausen, C. E. Olsen, T. Ishii, P. Ulvskov and N. Geshi, Plant
Cell, 2006, 18, 2593–2607; A. M. Swistowska, S. Wittrock,
W. Collisi and B. Hofer, Appl. Microbiol. Biotechnol., 2008, 79,
255–261.
22 E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud,
M. R. Wilkins, R. D. Appel and A. Bairoch, in The Proteomics
Protocols Handbook, ed. J. M. Walker, Humana Press Inc.,
Totowa, NJ, 2005, pp. 571–607.
23 Essentials of Glycobiology, ed. A. Varki, R. Cummings, J. Esko,
H. Freeze, G. Hart and J. Marth, Cold Spring Harbor Laboratory
Press, New York, 1999, pp. 151–152; J. M. Whitelock and
R. V. Iozzo, Chem. Rev., 2005, 105, 2745–2764.
´ ´
24 R. Lopez and A. Fernandez-Mayoralas, J. Org. Chem., 1994, 59,
737–745.
25 M. Sobue, H. Habuchi, K. Ito, H. Yonekura, K. Oguri,
K. Sakurai, S. Kamohara, Y. Ueno, R. Noyori and S. Suzuki,
Biochem. J., 1987, 241, 591–601.
6 M. Latorre, P. Penalver, J. Revuelta, J. L. Asensio, E. Garcı
Junceda and A. Bastida, Chem. Commun., 2007, 2829–2831.
´
a-
7 (a) F. N. Lugemwa and J. D. Esko, J. Biol. Chem., 1991, 266,
6674–6677; (b) T. A. Fritz, F. N. Lugemwa, A. K. Sarkar and
J. D. Esko, J. Biol. Chem., 1994, 269, 300–307; (c) F. N. Lugemwa,
A. K. Sarkar and J. D. Esko, J. Biol. Chem., 1996, 271,
19159–19165; (d) B. Kuberan, M. Ethirajan, X. V. Victor,
V. T. K. Nguyen and A. Do, ChemBioChem, 2008, 9, 198–200.
c
1320 Mol. BioSyst., 2011, 7, 1312–1321
This journal is The Royal Society of Chemistry 2011