V. Gudla, R. Balamurugan / Tetrahedron Letters 53 (2012) 5243–5247
5247
Inoguchi, R.; Ganesh, J. K.; Fujioka, H. J. Org. Chem. 2006, 71, 5191–5197; (u)
Smith, K.; El-Hiti, G. A.; Al-Shamali, M. Catal. Lett. 2006, 109, 77–82.
2. (a) Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 6431–6432;
(b) Ishihara, K.; Hanaki, N.; Yamamoto, H. Synlett 1995, 721–722; (c) Suda, K.;
Kikkawa, T.; Nakajima, S.; Takanami, T. J. Am. Chem. Soc. 2004, 126, 9554–9555;
(d) Suda, K.; Nakajima, S.; Satoh, Y.; Takanami, T. Chem. Commun. 2009, 1255–
1257; (e) Deng, X.-M.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2005, 70, 6537–6540; (f)
Hrdina, R.; Müller, C. E.; Wende, R. C.; Lippert, K. M.; Benassi, M.; Spengler, B.;
Schreiner, P. R. J. Am. Chem. Soc. 2011, 133, 7624–7627.
8. Xiao, H.-Q.; Shu, X.-Z.; Ji, K.-G.; Qi, C.-Z.; Liang, Y.-M. Catal. Commun. 2009, 10,
1824–1827.
9. Raptis, C.; Garcia, H.; Stratakis, M. Angew. Chem., Int. Ed. 2009, 48,
3133–3136.
10. Balamurugan, R.; Kothapalli, R. B.; Thota, G. K. Eur. J. Org. Chem. 2011, 1557–
1569.
11. Yamamoto, Y. J. Org. Chem. 2007, 72, 7817–7831.
12. Tsai, H.; Hu, E.; Perng, K.; Chen, M.; Wu, J.-C.; Chang, Y.-S. Surf. Sci. 2003, 537,
L447–L450.
3. (a) Wilson, M. S.; Woo, J. C. S.; Dake, G. R. J. Org. Chem. 2006, 71, 4237–4245; (b)
Vital, P.; Tanner, D. Org. Biomol. Chem. 2006, 4, 4292–4298; (c) Srikrishna, A.;
Satyanarayana, G.; Prasad, K. R. Synth. Commun. 2007, 37, 1511–1516.
4. (a) Kodama, T.; Harada, S.; Tanaka, T.; Tachi, Y.; Morimoto, Y. Synlett 2012, 458–
462; (b) Albert, B. J.; Koide, K. J. Org. Chem. 2008, 73, 1093–1098; (c) Lautens,
M.; Ouellet, S. G.; Raeppel, S. Angew. Chem., Int. Ed. 2000, 39, 4079–4082; (d)
Banerjee, M.; Roy, U. K.; Sinha, P.; Roy, S. J. Organomet. Chem. 2005, 690, 1422–
1428; (e) Wang, L.; Maddess, M. L.; Lautens, M. J. Org. Chem. 2007, 72, 1822–
1825; (f) Donald, J. R.; Taylor, R. J. K. Synlett 2009, 59–62; (g) Nokami, J.;
Maruoka, K.; Souda, T.; Tanaka, N. Tetrahedron 2007, 63, 9016–9022.
5. For recent selected reviews see: (a) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev.
2012, 41, 2448–2462; (b) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev.
2011, 111, 1657–1712; (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–
3265.
13. House, H. O.; Blaker, J. W.; Madden, D. A. J. Am. Chem. Soc. 1958, 80, 6386–6388.
14. Braña, M. F.; García, M. L.; López, B.; Pascual-Teresa, B. d.; Ramos, A.; Pozuelo, J.
M.; Domínguez, M. T. Org. Biomol. Chem. 2004, 2, 1864–1871.
15. Maki, T.; Ishihara, K.; Yamamoto, H. Org. Lett. 2005, 7, 5047–5050.
16. Li, L.; Cai, P.; Guo, Q.; Xue, S. J. Org. Chem. 2008, 73, 3516–3522.
17. Angle, S. R.; Neitzel, M. L. J. Org. Chem. 2000, 65, 6458–6461.
18. Genna, D. T.; Posner, G. H. Org. Lett. 2011, 13, 5358–5361.
19. Representive procedure for the rearrangement of 1a: To a solution of the epoxide
1a (100 mg, 0.61 mmol) in dry dioxane (3 mL) freshly prepared AuCl3 (0.2 mg,
0.1 mol %) and AgSbF6 (0.6 mg, 0.3 mol %) solutions in dry dioxane were added
and the reaction mixture was allowed to stir at room temperature. The reaction
was monitored by TLC and found to complete in 20 min. Dioxane was
evaporated. The residue was loaded on a silica gel column and was eluted with
EtOAc/hexanes (7/93) mixtures to obtain pure compound 2a in 83% yield as
colorless liquid. Rf = 0.27 in 1:10 EtOAc/hexanes. 1H NMR (400 MHz, CDCl3): d
3.38 (s, 3H), 3.75 (s, 2H), 4.06 (s, 2H), 7.22–7.35 (m, 5H). 13C NMR (100 MHz,
CDCl3): d 46.0, 59.1, 76.8, 127.0, 128.6, 129.3, 133.3, 205.7.
6. Garayalde, D.; Nevado, C. Beilstein J. Org. Chem. 2011, 7, 767–780. and the
references cited there in..
7. Hashmi, A. S. K.; Bührle, M.; Salathé, R.; Bats, J. W. Adv. Synth. Catal. 2008, 350,
2059–2064.