2242
S. T. Hilton et al. / Bioorg. Med. Chem. Lett. 15 (2005) 2239–2242
Recent studies by Waring and co-workers15 have sug-
gested that intracellular levels of gliotoxin exist almost
exclusively in the reduced formand that when glutathi-
one levels fall following induction of apoptotic cell
death, the oxidised disulfide is then released. In this
manner, the toxin can act further on neighbouring cells
in a pseudocatalytic way. The above studies have dem-
onstrated however, that under the anaerobic conditions
found in many types of tumour cell, the thiyl radicals
derived fromthe reduced formof epidithiodiketo-
piperazines are not sufficiently reactive per se in
intermolecular hydrogen atomabstraction fromthe
model ribose ester (19). However, as noted by Robins
in a model study of ribonucleotide reductase,16 signifi-
cant rate enhancements are observed in the intramolecu-
lar mode, even when the thiyl radical does not possess
additional electron withdrawing groups. For the ETP
family of natural products, the possibility therefore ex-
ists that one of the sulfur atoms could be involved either
in covalent modification through thiol disulfide inter-
change whilst the second thiol can then be available
for radical generation.
Med. Res. Rev. 1988, 8, 499–524; (d) Johnson, J. R.;
Bruce, F. W.; Dutcher, J. D. J. Am. Chem. Soc. 1943, 65,
2005–2009.
2. Eichner, R. D.; Waring, P.; Geue, A. M.; Braithwaite, A.
W.; Mullbacher, A. J. Biol. Chem. 1988, 263, 3772–3777.
¨
3. (a) Fridrichsons, J.; McL. Mathieson, A. Acta Crystallogr.
1967, 23, 439–448; (b) Fridrichsons, J.; McL. Mathieson,
A. Acta Crystallogr. 1965, 18, 1043–1052.
4. Chai, C. L. L.; Heath, G. A.; Huleatt, P. B.; OꢀShea, G. A.
J. Chem. Soc., Perkin Trans. 2 1999, 389–391.
5. Bernado, P. H.; Chai, C. L. L.; Deeble, G. J.; Liu, X.;
Waring, P. Bioorg. Med. Chem. Lett. 2001, 11, 483–485.
6. Rockwell, S. Oncol. Res. 1997, 9, 383–390.
7. (a) Glatthar, R.; Spichty, M.; Gugger, A.; Batra, R.;
Damm, W.; Mohr, M.; Zipse, H.; Giese, B. Tetrahedron
2000, 56, 4117–4128; (b) Giese, B.; Dussy, A.; Meggers, E.;
Petretta, M.; Schwitter, U. J. Am. Chem. Soc. 1997, 119,
11130–11131.
8. Crich, D.; Mao, X. J. Am. Chem. Soc. 1997, 119, 249–250.
9. (a) Cai, Y.; Roberts, B. P. Chem. Commun. 1998, 1145–
1146; (b) Haque, M. B.; Roberts, B. P.; Tocher, D. A.
J. Chem. Soc., Perkin Trans. 1 1998, 2881–2889; (c)
Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25–35; (d) Cai,
Y.; Roberts, B. P.; Tocher, D. A. J. Chem. Soc., Perkin
Trans. 1 2002, 1376–1386.
10. Akhlad, M. S.; Schuchmann, H.; Von Sonntag, C. Int. J.
Radiat. Biol. 1987, 51, 91–102.
11. Trown, P. W. Biochem. Biophys. Res. Commun. 1968, 33,
402–407.
12. (a) Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1976, 98,
6723–6724; (b) Fukuyama, T.; Nakatsuka, S.; Kishi, Y.
Tetrahedron 1981, 37, 2045–2078.
13. Gebbink, R. J. M. K.; Klink, S. I.; Feiters, M. C.; Nolte,
R. J. M. Eur. J. Inorg. Chem. 2000, 253–264.
14. Miknis, G. F.; Williams, R. M. J. Am. Chem. Soc. 1993,
115, 536–547.
Acknowledgements
We are grateful to the BBSRC (Grant no. B16703) for
the provision of a postdoctoral fellowship (to S.T.H)
for this work, as well as to Professor Brian Roberts
for helpful discussions.
References and notes
15. Bernado, P. H.; Brasch, N.; Chai, C. L. L.; Waring, P.
J. Biol. Chem. 2003, 278, 46549–46555.
16. Robins, M. J.; Ewing, G. J. J. Am. Chem. Soc. 1999, 121,
5823–5824.
1. (a) Waring, P.; Beaver, J. Gen. Pharmacol. 1996, 27, 1311–
1316; (b) Chai, C. L. L.; Waring, P. Redox Rep. 2000, 5,
257–264; (c) Waring, P.; Eichner, R. D.; Mullbacher, A.
¨