Journal of the American Chemical Society
ARTICLE
cleavage proceeded efficiently to produce ketone 74 (er = 99:1).20
Compound 74 has been shown to undergo cobalt-medi-
ated oxidation to give (S)-stigmolone (75) in 75% yield, without
epimerization occurring.18c Access to the ketone precursor needed
for the preparation of (R)-stigmolone simply entailed switching
the order of alkylation of hydrazone 71, and also proceeded with
excellent yield and diastereoselectivity (dr > 99:1).15 Hydrolysis of
bisalkylated product 76 produced ketone 77 (er = 99:1),20 which
has previously been converted to (R)-stigmolone (78) without
epimerization occurring.18c Utilizing our R,R-bisalkylation meth-
od, ketones 74 and 77 were prepared from ketone 70 in overall
yields of 89% and 87%, respectively, and with excellent enantios-
electivity (er = 99:1). This compares favorably to a prior asymmetric
synthesis of these ketones using the SAMP and RAMP auxiliaries.18c
In that case, ketones 74 and 77 were generated from 70 in 27% and
14% overall yields, respectively, and with enantiomer ratios of
96.5:3.5 and 96:4, respectively.21
(2) See, for example: (a) Abiko, A.; Moriya, O.; Filla, S. A.; Masamune,
S. Angew. Chem., Int. Ed. Engl. 1995, 34, 793–795. (b) Evans, D. A.; Ennis,
M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737–1739. (c) Evans,
D. A.; Takacs, J. M. Tetrahedron Lett. 1980, 21, 4233–4236. (d) Evans,
D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc.
1990, 112, 8215–8216. (e) Jeong, K. S.; Parris, K.; Ballester, P.; Rebek, J.
Angew. Chem., Int. Ed. Engl. 1990, 29, 555–556. (f) Kawanami, Y.; Ito, Y.;
Kitagawa, T.; Taniguchi, Y.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett.
1984, 25, 857–860. (g) Larcheveque, M.; Ignatova, E.; Cuvigny, T.
J. Organomet. Chem. 1979, 177, 5–15. (h) Lin, J.; Chan, W. H.; Lee,
A. W. M.; Wong, W. Y. Tetrahedron 1999, 55, 13983–13998. (i) Myers,
A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L.
J. Am. Chem. Soc. 1997, 119, 6496–6511. (j) Oppolzer, W.; Rodriguez, I.;
Starkemann, C.; Walther, E. Tetrahedron Lett. 1990, 31, 5019–5022.
(k) Sonnet, P. E.; Heath, R. R. J. Org. Chem. 1980, 45, 3137–3139.
(3) The opposite regioselectivity results for hydrazones having
electronically activating groups (e.g., phenyl, ester). See refs 1a, 1b.
(4) Such compounds may be prepared indirectly by the asymmetric
alkylation of a chiral carboxylate species (or synthetic equivalent) and
then stepwise conversion to the ketone. See, for example: (a) Myers,
A. G.; McKinstry, L. J. Org. Chem. 1996, 61, 2428–2440. (b) Palomo, C.;
Oiarbide, M.; Mielgo, A.; Gonzꢀalez, A.; García, J. M.; Landa, C.;
Lecumberri, A.; Linden, A. Org. Lett. 2001, 3, 3249–3252.
(5) Lim, D.; Coltart, D. M. Angew. Chem., Int. Ed. 2008, 47, 5207–
5210.
’ CONCLUSION
We have developed the first general method for the asym-
metric R,R-bisalkylation of ketones having both R- and R0-
protons, via CIS-D of ACC hydrazones. The transformation is
efficient and proceeds with both excellent regio- and stereose-
lectivity. Significantly, CIS-D completely reverses the inherent
preference of LDA to remove the least sterically hindered of two
similarly acidic protons. It also overrides the normal tendency of
LDA to remove the more strongly acidic proton in a substrate
having protons differing significantly in their acidity. Conse-
quently, the regiochemical outcome of this method is the
opposite of that normally obtained for kinetic LDA-mediated
deprotonation of ketones and SAMP/RAMP hydrazones. The
method was successfully utilized for the concise and efficient
asymmetric formal synthesis of both (R)- and (S)-stigmolone.
(6) Krenske, E. H.; Houk, K. N.; Lim, D.; Wengryniuk, S. E.; Coltart,
D. M. J. Org. Chem. 2010, 75, 8578–8584.
(7) Garnsey, M. R.; Lim, D.; Yost, J. M.; Coltart, D. M. Org. Lett.
2010, 12, 5234–5237.
(8) Garnsey, M. R.; Matous, J. A.; Kwiek, J. J.; Coltart, D. M. Bioorg.
Med. Chem. Lett. 2011, 21, 2406–2409.
(9) For lead references on the syn-dianion effect in N-sulfonyl
hydrazones, see: (a) Shapiro, R. H.; Lipton, M. F.; Kolonko, K. J.;
Buswell, R. L.; Capuano, L. A. Tetrahedron Lett. 1975, 1811–1814. (b)
Dauben, W. G.; Rivers, G. T.; Zimmerman, W. T.; Yang, N. C.; Kim, B.;
Yang, J. Tetrahedron Lett. 1976, 2951–2954. (c) Adlington, R. M.;
Barrett, A. G. M. Acc. Chem. Res. 1983, 16, 55–59.
(10) For a review of metal-mediated complex-induced proximity
effects in deprotonation, see: Whisler, M. C.; MacNeil, S.; Snieckus, V.;
Beak, P. Angew. Chem., Int. Ed. 2004, 43, 2206–2225.
(11) For an explanation of the stereochemical course of ACC
alkylations, see refs 5 and 6.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
analytical data for all new compounds. This material is available
(12) See the Supporting Information for details.
(13) Determined by 1H NMR.
’ AUTHOR INFORMATION
(14) Isomerization does occur if the hydrazone is exposed to acidic
conditions.
(15) Determined by HPLC. See the Supporting Information for
details.
Corresponding Author
(16) A third regioselective R-alkylation was attempted using 45 but
resulted in the recovery of only nonepimerized starting material,
suggesting that deprotonation had not occurred.
’ ACKNOWLEDGMENT
(17) Baseline resolution of the enantiomers could not be achieved
using the equipment at our disposal. However, based on the other data in
Table 5, we have no reason to suspect that the stereochemical integrity of
64 and 65 was compromised during hydrolysis.
We thank the NSF for a Graduate Fellowship for S.E.W. This
work was supported by NSF (1012287) and NCBC (2008-IDG-
1010).
(18) For prior total syntheses of (R)- and (S)-stigmolone, see: (a)
Mori, K. Eur. J. Org. Chem. 1998, 1479–1489. (b) Mori, K. Eur. J. Org.
Chem. 1998, 2181–2184. (c) Enders, D.; Ridder, A. Synthesis
2000, 1848–1851.
(19) Plaga, W.; Stamm, I.; Schairer, H. U. Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 11263–11267.
(20) Determined by chiral HPLC. See the Supporting Information
for details.
(21) The preparation of ketone 73 according to this method
required HPLC purification of an advanced intermediate from dr =
92.5:7.5 to 99.5:0.5. See ref 18c.
’ REFERENCES
(1) (a) Enders, D.; Eichenauer, H.; Baus, U.; Schubert, H.; Kremer,
K. A. M. Tetrahedron 1984, 40, 1345–1359. (b) Enders, D. In Asymmetric
Synthesis, 1st ed.; Morrison, J. D., Ed.; Academic Press: New York, 1984;
Vol. 3, pp 275ꢀ339. (c) Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.;
Enders, D. Tetrahedron 2002, 58, 2253–2329. (d) Meyers, A. I.;
Williams, D. R.; Druelinger, M. J. Am. Chem. Soc. 1976, 98, 3032–
3033. (e) Meyers, A. I.; Williams, D. R. J. Org. Chem. 1978, 43, 3245–
3247. (f) Meyers, A. I.; Williams, D. R.; Erickson, G. W.; White, S.;
Druelinger, M. J. Am. Chem. Soc. 1981, 103, 3081–3087. (g) Hashimoto,
S.; Koga, K. Tetrahedron Lett. 1978, 573–576. (h) Hashimoto, S.; Koga,
K. Chem. Pharm. Bull. 1979, 27, 2760–2766.
8720
dx.doi.org/10.1021/ja202267k |J. Am. Chem. Soc. 2011, 133, 8714–8720