312
B.N. Sarkar et al. / Journal of Molecular Structure 994 (2011) 306–312
1
(pA
pꢂ) fluores-
[12] H.-B. Yang, K. Ghosh, Y. Zhao, B.H. Northrop, M.M. Lyndon, D.C. Muddiman,
H.S. White, P.J. Stang, J. Am. Chem. Soc. 130 (2008) 839.
[13] P.J. Steel, Acc. Chem. Res. 38 (2005) 243.
ꢄ410 nm which are assigned to the intraligand
cence [25,53–55]. The halide complexes 1–3 show weak emission
bands compared to the pesudohalide compounds 4 and 5 presum-
ably due to better quenching ability of the halogens [56]. Represen-
tative emission spectra of a halide (3) and a pseudohalide (5)
compounds are shown in Fig. 5.
[14] M. Nishio, M. Hirota, Y. Umezawa, The CH/
York, 1998.
p Interaction, Wiley-VCH, New
[15] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and
Biology, OUP, Oxford, 1999.
[16] N.V. Belkova, E.S. Shubina, L.M. Epstein, Acc. Chem. Res. 38 (2005) 624.
[17] M.J. Zaworotko, Cryst. Growth Des. 7 (2007) 4.
[18] D. Braga, F. Grepioni, A.G. Orpen, Crystal Engineering: From Molecules and
Crystals to Materials, Kluwer, Dordrecht, 1999.
4. Conclusion
[19] O.M. Yaghi, M. O’Keeffe (Eds.), Design of solids from molecular building
blocks: golden opportunity for solid state chemistJ. Solid State Chem. 152
(Special issue) (2000) 1.
[20] J.W. Steed, J.L. Atwood, Supramolecular Chemistry, second ed., John Wiley &
Sons, New York, 2009.
[21] S.H. Rahaman, R. Ghosh, G. Mostafa, B.K. Ghosh, Inorg. Chem. Commun. 8
(2005) 700.
[22] S.H. Rahaman, D. Bose, R. Ghosh, G. Mostafa, H.-K. Fun, B.K. Ghosh, Struct.
Chem. 18 (2007) 237.
A series of luminous cadmium(II) halide/pseudohalide com-
plexes in combination with a pentadentate N-donor Schiff base
has been synthesized and X-ray crystallographically characterized;
interestingly, halide compounds with solvent of crystallization sta-
bilizes the crystalline architectures as compared over pseudohalide
ones.
[23] H. Chowdhury, S.H. Rahaman, S.K. Sarkar, H.-K. Fun, B.K. Ghosh, J. Mol. Struct.
826 (2007) 170.
Supplementary data
[24] S. Das, B.N. Sarkar, K. Bhar, S. Chattopadhyay, H.-K. Fun, P. Mitra, B.K. Ghosh,
Inorg. Chem. Commun. 13 (2010) 353.
[25] B.N. Sarkar, K. Bhar, S. Chattopadhyay, S. Das, P. Mitra, B.K. Ghosh, J. Mol.
Struct. 963 (2010) 35.
[26] V. Alexander, Chem. Rev. 95 (1995) 273.
[27] P.A. Vigato, S. Tamburini, L. Bertolo, Coord. Chem. Rev. 251 (2007) 1311.
[28] G. Wu, X.-F. Wang, T. Okamura, W.-Y. Sun, N. Ueyama, Inorg. Chem. 45 (2006)
8523.
[29] A. Lan, L. Han, D. Yuan, F. Jiang, M. Hong, Inorg. Chem. Commun. 10 (2007) 993.
[30] T. Chattopadhyaay, A. Banerjee, K.S. Banu, E. Suresh, M. Netahji, G. Birarda, E.
Zangrando, D. Das, Polyhedron 27 (2008) 2452.
Crystallographic data for the structural analyses have been
deposited with the Cambridge Crystallographic data center Nos.
767045 (1), 764795 (2), 764796 (3), 764797 (4) and 764798 (5).
Copies of this information can be obtained, free of charge from
The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax:
+44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or http://
[31] B. Hollo, Z.D. Tomic, P. Pogany, A. Kovacs, V.M. Leovac, K.M. Szecsenyci,
Polyhedron 28 (2009) 3881.
[32] A.M. Golub, H. Kohler, V.V. Skopenko (Eds.), Chemistry of Pseudohalides,
Elsevier, Amsterdam, 1986.
Acknowledgements
[33] D.A. Buckingham, Coord. Chem. Rev. 135–136 (1994) 587.
[34] J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Cortes, L. Lezama, T. Rojo, Coord.
Chem. Rev. 193–195 (1999) 1027.
[35] Y.-Q. Sun, D.-Z. Gao, W. Dong, D.-Z. Liao, C.-X. Zhang, Eur. J. Inorg. Chem. (2009)
2825.
[36] H. Chowdhury, R. Ghosh, S.H. Rahaman, B.K. Ghosh, Polyhedron 27 (2007)
5023.
[37] W.C. Wolsey, J. Chem. 50 (1973) A335.
Financial support from the DST and CSIR, New Delhi, India is
gratefully acknowledged. SC is grateful to the UGC and KB and
SD to the CSIR, New Delhi, India for fellowships. The authors also
acknowledge the use of DST-funded National Single Crystal X-ray
Diffraction Facility at the Department of Inorganic Chemistry, IACS,
Kolkata, India for crystallographic study.
[38] SAINT Plus, Data Reduction and Correction Program, v. 6.01, Bruker AXS,
Madison, Wisconsin, USA, 1998.
[39] SADABS v.2.01, Bruker/Siemens Area Detector Absorption Correction Program,
Bruker AXS, Madison, Wisconsin, USA, 1998.
Appendix A. Supplementary material
[40] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
[41] D.J. Watkin, C.K. Prout, L.J. Pearce, CAMERON, Chemical Crystallography
Laboratory, Oxford, England, 1996.
[42] M. Nardelli, J. Appl. Cryst. 28 (1995) 659.
Supplementary data associated with this article can be found, in
[43] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M.
Towler, J. van de Streek, J. Appl. Cryst. 39 (2006) 453.
[44] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[45] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[46] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, Part B, fifth ed., John Wiley & Sons, New Jersey, 2009.
[47] O.H. Ellestad, P. Klaeboe, E.E. Tucker, J. Songstad, Acta Chem. Scand. 26 (1972)
1721.
[48] M.A.S. Goher, F.A. Mautner, J. Chem. Soc. Dalton Trans. (1999) 1923.
[49] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier, New York,
1984.
[50] J. Garcia Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy
of Inorganic Solids, John Wiley & Sons, New York, 2005.
[51] S.H. Rahaman, H.-K. Fun, B.K. Ghosh, Polyhedron 24 (2005) 3091.
[52] P. Talukder, A. Datta, S. Mitra, G. Rosair, M.S.E. Fallah, J. Ribas, Dalton Trans.
(2004) 4161.
References
[1] P. Comba, T.W. Hambley, B. Martin, Molecular Modeling of Inorganic
Compounds, third ed., Wiley-VCH, Wienheim, 2009.
[2] J.N. Lalena, D.A. Cleary, Principles of Inorganic Materials Design, second ed.,
John Wiley & Sons Inc., Hoboken, New Jersey, 2010.
[3] H. Zhang, X. Wang, K. Zhang, B.K. Teo, Coord. Chem. Rev. 183 (1999) 157.
[4] Q.-G. Zhai, X.-Y. Wu, S.-M. Chen, C.-Z. Lu, W.-B. Yang, Cryst. Growth Des. 6
(2006) 2126.
[5] H. Deng, Y.-C. Qiu, Y.-H. Li, Z.-H. Liu, R.-H. Zeng, M. Zeller, S.R. Batten, Chem.
Commun. (2008) 2239.
[6] P. Cui, Z. Chen, D. Gao, B. Zhao, W. Shi, P. Cheng, Cryst. Growth Des. 10 (2010) 4370.
[7] J. Yang, B. Wu, F. Zhuge, J. Liang, C. Jia, Y.-Y. Wang, N. Tang, X.-J. Yang, Q.-Z. Shi,
Cryst. Growth Des. 10 (2010) 2331.
[8] G. Wei, Y.-F. Shen, Y.-R. Li, X.-C. Huang, Inorg. Chem. 49 (2010) 9191.
[9] V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines, Wiley-VCH,
Weinheim, 2003.
[10] M. Petty, Molecular Electronics: From Principles to Practice, Wiley, Chichester,
2008.
[11] C.S. Foote, Acc. Chem. Res. 32 (1999) Number 4.
[53] B. Dutta, P. Bag, U. Florke, K. Nag, Inorg. Chem. 44 (2005) 147.
[54] S. Banthia, A. Samanta, J. Phys. Chem. B 110 (2006) 6437.
[55] W. Chen, Q. Peng, Y. Li, Cryst. Growth Des. 8 (2008) 564.
[56] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Springer, USA,
2006.