ORGANIC
LETTERS
2011
Vol. 13, No. 12
3020–3023
Triphenylene-Fused Porphyrins
Lin Jiang,† James T. Engle,‡ Laura Sirk,† C. Scott Hartley,†
Christopher J. Ziegler,‡ and Hong Wang*,†
Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056,
United States, and Department of Chemistry, University of Akron, Akron, Ohio 44325,
United States
Received April 1, 2011
ABSTRACT
Triphenylene has been successfully fused to the porphyrin periphery through a convenient oxidative ring-closure reaction. Bistriphenylene-fused
porphyrins and a dibenzo[fg,op]tetracene-fused porphyrin have also been obtained using a similar approach. These π-extended porphyrins
exhibited broadened and bathochromic shifted UVꢀvis absorptions.
Porphyrins fused with external aromatic rings show
promise in a broad range of applications in various areas,
including near-infrared dyes,1 molecular devices,2 organic
light-emitting diodes,3 and biosensors.4 In particular, por-
phyrins fused with polycyclic aromatic hydrocarbons
(PAHs) hold great potential in the fast growing areas of
molecular electronics and nanotechnology as heteroatom-
containing molecular graphene mimics.5 As such, the devel-
opment of new methodologies to fuse aromatic rings to the
porphyrin periphery has remained an intense area of interest.
The oxidative ring closure reaction has been proven to be
an effective approach to construct polycyclic aromatic
hydrocarbons.6 Recently, this approach has also been utilized
in porphyrins. Porphyrins fused with anthracene,7 pyrene,8
† Miami University.
‡ University of Akron.
(1) (a) Schwab, P. F. H.; Levin, M. D.; Michl, J. Chem. Rev. 1999, 99,
1863. (b) Tsuda, A.; Osuka, A. Science 2001, 293, 79–82.
(2) (a) Linke-Schaetzel, M.; Anson, C. E.; Powell, A. K.; Buth, G.;
Palomares, E.; Durrant, J. D.; Balaban, T. S.; Lehn, J. M. Chem.;Eur.
J. 2006, 12, 1931. (b) Xu, H.; Wang, Y.; Yu, G.; Xu, W.; Song, Y. B.;
Zhang, D. Q.; Liu, Y. Q.; Zhu, D. B. Chem. Phys. Lett. 2005, 414, 369. (c)
Liu, Z. M.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Science 2003,
302, 1543. (d) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999,
38, 1351.
(3) (a) Borek, C.; Hanson, K.; Djurovich, P. I.; Thompson, M. E.;
Aznavour, K.; Bau, R.; Sun, Y. R.; Forrest, S. R.; Brooks, J.; Michalski,
L.; Brown, J. Angew. Chem., Int. Ed. 2007, 46, 1109. (b) Baluschev, S.;
Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov, S.; Aleshchenkov,
S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; Mullen, K.; Wegner, G.
Angew. Chem., Int. Ed. 2007, 46, 7693.
(5) (a) Matsumoto, S.; Qu, S.; Kobayashi, T.; Kanehiro, M.;
Akazome, M.; Ogura, K. Heterocycles 2010, 80, 645. (b) Yamada, H.;
Kuzuhara, D.; Ohkubo, K.; Takahashi, T.; Okujima, T.; Uno, H.; Ono,
N.; Fukuzumi, S. J. Mater. Chem. 2010, 20, 3011. (c) Nakamura, Y.;
Jang, S. Y.; Tanaka, T.; Aratani, N.; Lim, J. M.; Kim, K. S.; Kim, D.;
Osuka, A. Chem.;Eur. J. 2008, 14, 8279. (d) Tanaka, T.; Nakamura,
Y.; Osuka, A. Chem.;Eur. J. 2008, 14, 204.
(6) (a) Muller, M.; Kubel, C.; Mullen, K. Chem.;Eur. J. 1998, 4,
2099. (b) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540.
(7) (a) Davis, N.; Pawlicki, M.; Anderson, H. Org. Lett. 2008, 10,
3945. (b) Davis, N. K. S.; Thompson, A. L.; Anderson, H. L. J. Am.
Chem. Soc. 2011, 133, 30.
(8) Diev, V. V.; Hanson, K.; Zimmerman, J. D.; Forrest, S. R.;
Thompson, M. E. Angew. Chem., Int. Ed. 2010, 49, 5523.
(9) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew.
Chem., Int. Ed. 2006, 45, 3944.
(4) (a) Akhigbe, J.; Zeller, M.; Bruckner, C. Org. Lett. 2010, 13, 1322.
(b) Chen, W.; Ding, Y.; Akhigbe, J.; Bruckner, C.; Li, C. M.; Lei, Y.
Biosens. Bioelectron. 2010, 26, 504. (c) Salazar-Salinas, K.; Jauregui,
L. A.; Kubli-Garfias, C.; Seminario, J. M. J. Chem. Phys. 2009, 130, 793.
r
10.1021/ol200853g
Published on Web 05/23/2011
2011 American Chemical Society