642
P. Torney et al.
LETTER
2010, 22, 2403. (c) Balaji, G.; Shim, W.; Parameswaran, M.;
Valiyaveettil, S. Org. Lett. 2009, 11, 4450. (d) He, J.; Liu,
H.; Dai, Y.; Ou, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.;
Ma, D. J. Phys. Chem. C 2009, 11, 6761. (e) Adhikari, R.;
Duan, L.; Hou, L.; Qiu, Y.; Neckers, D.; Shah, B. Chem.
Mater. 2009, 21, 4638. (f) Boudreault, P.; Wakim, S.; Tang,
M.; Tao, Y.; Bao, Z.; Leclerc, M. J. Mater. Chem. 2009, 19,
2921. (g) Zhang, K.; Tao, Y.; Yang, C.; You, H.; Zou, Y.;
Qin, J.; Ma, D. Chem. Mater. 2008, 20, 7324.
(h) Pefkianakis, E.; Tzanetos, N.; Kallitsis, J. Chem. Mater.
2008, 20, 6254. (i) Blouin, N.; Leclerc, M. Acc. Chem. Res.
2008, 41, 1110. (j) Wakim, S.; Aich, B.; Tao, Y.; Leclerc,
M. Polym. Rev. 2008, 48, 432. (k) Levesque, I.; Bertrand,
P.; Blouin, N.; Leclerc, M.; Zecchin, S.; Zotti, G.; Ratcliffe,
C.; Klug, D.; Gao, X.; Gao, F.; Tse, J. Chem. Mater. 2007,
19, 2128. (l) Boudreault, P.; Wakim, S.; Blouin, N.; Simard,
M.; Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc.
2007, 129, 9125. (m) Li, Y.; Wu, Y.; Ong, B.
Renard, P.; Caignard, D.; Atassi, G.; Solans, X.; Constans,
P.; Bailly, C.; Pujol, M. J. Med. Chem. 2007, 50, 294.
(e) Kuo, P.; Hsub, Y.; Changc, C.; Linb, C. Cancer Lett.
2005, 223, 293.
(7) (a) Tietze, L. F.; Brasche, G.; Gericke, G. Domino Reactions
in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
(b) Tietze, L. F.; Modi, A. Med. Res. Rev. 2000, 20, 304.
(c) Tietze, L. F.; Lieb, M. Curr. Opin. Chem. Biol. 1998, 2,
363. (d) Tietze, L. F. Chem. Rev. 1996, 96, 115. (e) Tietze,
L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32,
131.
(8) (a) Patre, R.; Shet, J.; Parameswaran, P.; Tilve, S.
Tetrahedron Lett. 2009, 50, 6488. (b) Majik, M.;
Parameswaran, P.; Tilve, S. J. Org. Chem. 2009, 74, 6378.
(c) Majik, M.; Parameswaran, P.; Tilve, S. J. Org. Chem.
2009, 74, 3591. (d) Parvatkar, P.; Parameswaran, P.; Tilve,
S. J. Org. Chem. 2009, 74, 8369. (e) Patre, R.; Gawas, S.;
Parameswaran, P.; Tilve, S. Tetrahedron Lett. 2007, 48,
3517. (f) Parvatkar, P.; Parmeswaran, P.; Tilve, S.
Tetrahedron Lett. 2007, 48, 7870. (g) Majik, M.; Shet, J.;
Tilve, S.; Parameswaran, P. Synthesis 2007, 663.
Macromolecules 2006, 39, 6521.
(4) For recent methods of synthesis, see: (a) Neogi, S.; Roy, A.;
Naskar, D. J. Comb. Chem. 2010, 12, 75. (b) Curiel, D.;
Mas-Montoya, M.; Uruvakili, A.; Orenes, R.; Pallamreddy,
H.; Molina, P. Org. Lett. 2010, 12, 3164. (c) Budén, M.;
Vaillard, V.; Martin, S.; Rossi, R. J. Org. Chem. 2009, 74,
4490. (d) Park, I.; Suh, S.; Lim, B.; Cho, C. Org. Lett. 2009,
11, 5454. (e) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H.
J. Org. Chem. 2009, 74, 4720. (f) Yamashita, M.;
Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. J. Org.
Chem. 2009, 74, 7481. (g) Stokes, B.; Jovanović, B.; Dong,
H.; Richert, K.; Riell, R.; Driver, T. J. Org. Chem. 2009, 74,
3225. (h) Eisch, J.; Manchanayakage, R.; Rheingold, A.
Org. Lett. 2009, 11, 4060. (i) Han, X.; Lu, X. Org. Lett.
2009, 11, 2381. (j) Yamashita, M.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2009, 11, 2337. (k) Adhikari, R.;
Neckers, D.; Shah, B. J. Org. Chem. 2009, 74, 3341.
(5) For recent reviews, see: (a) Knölker, H.-J. Chem. Lett. 2009,
38, 8. (b) Alberico, D.; Scott, M.; Lautens, M. Chem. Rev.
2007, 107, 174. (c) Knölker, H.-J. Top. Curr. Chem. 2005,
244, 115. (d) Gribble, G.; Saulnier, M.; Pelkey, E.;
(h) Amonkar, C.; Tilve, S.; Parmeswaran, P. Synthesis 2005,
2341. (i) Shet, J.; Desai, V.; Tilve, S. Synthesis 2004, 1859.
(9) (a) Wu, J.; Jiang, X.; Xu, J.; Dai, W.-M. Tetrahedron 2011,
67, 179. (b) Wu, J.; Sun, L.; Dai, W.-M. Tetrahedron 2006,
62, 8360. (c) Jarosz, S.; Szewczyk, K. Tetrahedron Lett.
2001, 42, 3021. (d) Jarosz, S.; Skora, S. Tetrahedron:
Asymmetry 2000, 11, 1425. (e) Jarosz, S.; Skora, S.
Tetrahedron: Asymmetry 2000, 11, 1433.
(10) General Procedure for the Tandem Wittig–Diels–Alder
Reaction for Preparation of Tetrahydrocarbazole
Lactones (5a,b/10a,b) and Tetrahydrocarbazole
Lactams (5c,d/10c,d): A solution of indole carboxaldehyde
1/7 (1 mmol) and phosphorane 2a–d (1.5 mmol) in diphenyl
ether (10 mL) was refluxed under nitrogen atmosphere for
2–8 h. The crude mixture was subjected to column
chromatography over silica gel and diphenyl ether was
removed using hexanes as eluent. Further elution with
30–40% EtOAc and hexanes afforded the corresponding
g-lactones 5a,b/10a,b and g-lactams 5c,d/10c,d.
Kishbaugh, T.; Liu, Y.; Jiang, J.; Trujillo, H.; Keavy, D.;
Davis, D.; Conway, S.; Switzer, F.; Roy, S.; Silva, R.;
Obaza-Nutaitis, J.; Sibi, M.; Moskalev, N.; Barden, T.;
Chang, L.; Habeski nee Simon, W.; Pelcman, B.; Sponholtz,
W. III.; Chau, R.; Allison, B.; Garaas, S.; Sinha, M.;
McGowan, M.; Reese, M.; Harpp, K. Curr. Org. Chem.
2005, 9, 1493. (e) Agarwal, S.; Cammerer, S.; Filali, S.;
Frohner, W.; Knoll, J.; Krahl, M.; Reddy, K.; Knölker, H.-J.
Curr. Org. Chem. 2005, 9, 1601. (f) Knölker, H.-J.; Reddy,
K. Chem. Rev. 2002, 102, 4303. (g) Gallagher, P. Science of
Synthesis, Vol. 10; Thieme: Stuttgart, 2000, 693. (h) In
Advances in Nitrogen Heterocycles, Vol. 1; Moody, C., Ed.;
JAI: Greenwich, 1995, 173.
General Procedure for Aromatization Using DDQ: A
mixture of tetrahydrocarbazoles 5a–d/10a–d (1 mmol) and
DDQ (3 mmol) in dioxane (10 mL) was refluxed for 8 h. The
reaction mixture was allowed to cool to ambient temperature
and filtered. The filtrate was then concentrated under
reduced pressure. The resulting residue was dissolved in
EtOAc (20 mL) and washed with 2 N NaOH (20 mL) and
H2O (20 mL). The organic phase was dried over anhyd
Na2SO4 and concentrated under reduced pressure. The
resulting residue on purification using flash chromatography
with hexanes–EtOAc (70:30) gave the oxidized products
6a–d/11a–d.
(6) For recent reports on biologically active lactones and
lactams, see: (a) Chihiro, I.; Masataka, I.; Kie, A.; Keisuke,
Y.; Nijsiri, R.; Hiroshi, F. J. Nat. Prod. 2009, 72, 1202.
(b) Ferlin, M.; Marzano, C.; Gandin, V.; Dall’Acqua, S.;
Dalla Via, L. Chem. Med. Chem. 2009, 4, 363.
3,5-Dihydro-1H-furo[3,4-b]carbazol-1-one (6a): 1H NMR
(300 MHz, DMSO): d = 5.46 (s, 2 H), 7.21 (t, J = 7.8 Hz, 1
H), 7.49 (t, J = 7.8 Hz, 1 H), 7.53 (d, J = 8.1 Hz, 1 H), 7.62
(s, 1 H), 8.30 (d, J = 7.8 Hz, 1 H), 8.66 (s, 1 H), 11.78 (s, 1
H). 13C NMR (300 MHz, DMSO): d = 69.85, 104.29, 111.83,
116.03, 118.12, 120.10, 121.47, 122.56, 124.50, 127.28,
141.27, 144.40, 144.85, 171.69. HRMS: m/z [M + Na] calcd
for C14H9O2N: 246.0531; found: 246.0524.
(c) Poljakova, J.; Eckschlager, T.; Hrabeta, J.; Hrebackova,
J.; Smutny, S.; Frei, E.; Martinek, V.; Kizek, R.; Stiborova,
M. Biochem. Pharmacol. 2009, 77, 1466. (d) Romero, M.;
Synlett 2011, No. 5, 639–642 © Thieme Stuttgart · New York