Journal of the American Chemical Society
COMMUNICATION
an oxidative bis(decarboxylation) to furnish [2.2.2]-bicyclic
lactam 17, (b) a Heck cyclization to assemble the natural
product’s [3.3.1]-bicyclic scaffold, and (c) a late-stage inter-
rupted Fischer indolization to install the furoindoline and con-
struct the full pentacyclic framework of 1. Our synthesis of 1
validates the interrupted Fischer indolization approach to in-
tricate indoline-containing natural products and sets the stage for
future synthetic endeavors.
(9) (a) Fessner, W. D.; Sedelmeier, G.; Spurr, P. R.; Rihs, G.;
Prinzbach, H. J. Am. Chem. Soc. 1987, 109, 4626–4642. (b) Snow,
R. A.; Degenhardt, C. R.; Paquette, L. A. Tetrahedron Lett. 1976,
17, 4447–4450.
(10) (a) Ensley, H. E.; Buescher, R. R.; Lee, K. J. Org. Chem. 1982,
47, 404–408. (b) Sole, D.; Diaba, F.; Bonjoch, J. J. Org. Chem. 2003,
68, 5746–5749.
(11) The conversion of 24 to 25 was achieved through a sequence
involving (a) ketone protection as the cyclic ketal, (b) oxidative cleavage
of the terminal olefin, (c) reduction of the corresponding aldehyde, and
(d) acid-mediated ketal deprotection.
’ ASSOCIATED CONTENT
(12) The conversion of 24 to 26 was achieved through a sequence
involving (a) ketone protection as the cyclic ketal, (b) oxidative cleavage
of the terminal olefin, (c) reduction of the corresponding aldehyde,
(d) Piv protection of the resulting alcohol, and (e) acid-mediated ketal
deprotection.
S
Supporting Information. Detailed experimental proce-
b
dures and compound characterization data. This material is
(13) Under a variety of interrupted Fischer indolization conditions,
substrate 25 underwent facile dehydration to the corresponding
dihydrofuran.
’ AUTHOR INFORMATION
Corresponding Author
(14) Although ketone 26 underwent condensation with phenylhy-
drazine under several interrupted Fischer indolization conditions, no
evidence of [3,3]-sigmatropic rearrangement was detected.
(15) Ketone 23, a substrate without the C7 side chain, readily
underwent Fischer indolization upon treatment with phenylhydrazine
and various acids. The factors that influence the likelihood of [3,3]-
sigmatropic rearrangement in this series of compounds are currently
under investigation.
(16) A more concise approach involving oxidative cleavage of the
terminal olefin in 24 led to substantial decomposition.
(17) Sabahi, A.; Novikov, A.; Rainier, J. D. Angew. Chem., Int. Ed.
2006, 45, 4317–4320.
’ ACKNOWLEDGMENT
The authors are grateful to the National Science Foundation
(CHE-0955864), Boehringer Ingelheim, DuPont, Eli Lilly, and
the University of California, Los Angeles, for financial support.
We thank the Garcia-Garibay laboratory (UCLA) for access to
instrumentation, Dr. John Greaves (UC Irvine) for mass spectra,
and Ryan Hollibaugh (UCLA) and Jose Alonso (UCLA) for
experimental assistance. We are grateful to Professor Kam
(University of Malaya, Malaysia) for providing an authentic
sample of aspidophylline A.
(18) Aspidophylline A was isolated as a 17:1 mixture of formamide
rotamers.
’ REFERENCES
(1) (a) For a review describing recent indole functionalization
methodology, see: Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed.
2009, 48, 9608–9644. (b) For a review of recent indole alkaloid
syntheses, see: Bronner, S. M.; Im, G.-Y. J.; Garg, N. K. In Heterocycles
in Natural Product Synthesis; Majumdar, K. C., Chattopadhyay, S. K.,
Eds.; Wiley-VCH: Weinheim, Germany, 2011; pp 221À266.
(2) For reviews, see: (a) Kam, T.-S. Alkaloids: Chem. Biol. Perspect.
1999, 14, 285–435. (b) Kam, T.-S.; Choo, Y. M. Alkaloids (San Diego)
2006, 63, 181–337.
(3) For recent isolation reports, see: (a) Subramaniam, G.; Hiraku,
O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T.-S. J. Nat. Prod.
2007, 70, 1783–1789. (b) Subramaniam, G.; Kam, T.-S. Helv. Chim. Acta
2008, 91, 930–937.
€
(4) (a) C-elebi-Olc-€um, N.; Boal, B. W.; Huters, A. D.; Garg, N. K.;
Houk, K. N. J. Am. Chem. Soc. 2011, 133, 5752–5755. (b) Boal, B. W.;
Schammel, A. W.; Garg, N. K. Org. Lett. 2009, 11, 3458–3461. (c)
Schammel, A. W.; Boal, B. W.; Zu, L.; Mesganaw, T.; Garg, N. K.
Tetrahedron 2010, 66, 4687–4695.
(5) For an impressive late-stage Fischer indolization in natural
product synthesis, see: Ueda, H.; Satoh, H.; Matsumoto, K.; Sugimoto,
K.; Fukuyama, T.; Tokuyama, H. Angew. Chem., Int. Ed. 2009, 48,
7600–7603.
(6) For reviews of the Heck reaction, see: (a) Dounay, A. B.;
Overman, L. E. Chem. Rev. 2003, 103, 2945–2963. (b) Beletskaya,
I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066. (c) Amatore,
C.; Jutand, A. J. Organomet. Chem. 1999, 576, 254–278.
(7) For the use of the Heck reaction in the synthesis of Strychnos
alkaloids, see: (a) Rawal, V. H.; Michoud, C.; Monestel, R. F. J. Am.
Chem. Soc. 1993, 115, 3030–3031. (b) Rawal, V. H.; Iwasa, S. J. Org.
Chem. 1994, 59, 2685–2686. (c) Martin, D. B. C.; Vanderwal, C. D.
J. Am. Chem. Soc. 2009, 131, 3472–3473.
(8) Herdeis, C.; Hartke, C. Heterocycles 1989, 29, 287–296.
8879
dx.doi.org/10.1021/ja203227q |J. Am. Chem. Soc. 2011, 133, 8877–8879