Journal of the American Chemical Society
COMMUNICATION
containing 2 indicate a turn-on voltage of 2.7 V (Figure 4C).
A maximum current efficiency of 65.3 cd/A was achieved at 0.01
mA/cm2, which corresponds to a maximum EQE of 21.3%
(Figure 4B,D). This efficiency is comparable to that of cyclome-
talated iridium(III)-based devices, which currently set the stan-
dard for efficiency. The present work suggests that three-
coordinate copper(I) complexes are promising EL materials in
terms of efficiency and thermal stability. Detailed studies of the
photophysics of these three-coordinate copper complexes are in
progress.
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray crystallographic data
b
(CIF), synthetic details, time-dependent density functional
theory calculations, and a table of experimental data. This
material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
Figure 4. Properties of an OLED containing 2 as a dopant: (A) EL
spectrum; (B) dependence of EQE on current density; (C) IꢀV
characteristics; (D) dependence of current efficiency on current density.
The authors acknowledge Dr. Daisuke Hashizume for tech-
nical assistance with X-ray structural analysis.
’ REFERENCES
Barakat observed JahnꢀTeller distortion from Y- to T-shaped
geometry in the triplet excited state of trigonal planar Au(I) com-
plexes containing three monophosphine ligands ([Au(PR3)3]þ).9
Our calculations predicted that the Cu(I) complex [Cu(PMe3)3]þ
with a structure similar to that of [Au(PMe3)3]þ should undergo
comparable distortion in the excited state.10 The contribution
of MLCT character to the excited state is necessary for excited-
state distortion in the Au(I) and Cu(I) complexes. Although
there is 28% MLCT character in the triplet excited state of
complex 2, the distortion is markedly small, as shown in
Figure 3. Presumably the bisphosphine ligand largely prevents
JahnꢀTeller distortion in the three-coordinate Cu(I) com-
plexes. The small distortion of the excited states of 2 is
assumed to reduce the rate of nonradiative decay, leading to
a high Φ.
As described above, complexes 1ꢀ3 exhibit strong phosphor-
escence in dichloromethane solution. Prior to preparation of
OLEDs, the phosphorescence from evaporated amorphous films
containing 1ꢀ3 was investigated using layers of 1,3-bis(carbazol-
9-yl)benzene (mCP) doped with 10% 1ꢀ3 with a thickness of
50 nm deposited onto a quartz plate. The amorphous films
exhibited Φ values of 0.57ꢀ0.71 and τ values of 3.2ꢀ6.1 μs
(Table 1). On the basis of the PL data for the doped samples,
complex 2 was selected for use as a dopant in an OLED. Except
for 2, the materials used to make the device are commercially
available. A bottom-emitting device with a three-layer structure
of ITO (110 nm)/TAPC (30 nm)/mCP þ 10% 2 (25 nm)/
3TPYMB (50 nm)/LiF (0.5 nm)/Al (100 nm), where TAPC is
di-[4-(N,N-ditolylamino)phenyl]cyclohexane and 3TPYMB is
tris[2,4,6-trimethyl-3-(pyridine-3-yl)phenyl]borane, was fabri-
cated. The electroluminescence (EL) of 2 (λmax = 517 nm) is
in good agreement with the PL data, as shown in Figure 4A and
Table 1. The currentꢀvoltage (IꢀV) characteristics of the device
(1) (a) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R.
J. Appl. Phys. 2001, 90, 5048–5051. (b) Tanaka, D.; Agata, Y.; Sasabe, S.;
Li, Y.-J.; Su, S.-J.; Takeda, T.; Kido, J. Jpn. J. Appl. Phys. 2007,
46, L10–L12. (c) Tanaka, D.; Agata, Y.; Takeda, T.; Watanabe, S.; Kido,
J. Jpn. J. Appl. Phys. 2007, 46, L117–L119. (d) Kondakova, M. E.; Pawlik,
T. D.; Young, R. H.; Giesen, D. J.; Kondakov, D. Y.; Brown, C. T.;
Deaton, J. C.; Lenhard, J. R.; Klubek, K. P. J. Appl. Phys. 2008, 104, No.
094501. (e) Chopra, N.; Lee, J.; Zheng, Y.; Eom, S.-H.; Xue, J.; So, F.
Appl. Phys. Lett. 2008, 93, No. 143307.
(2) (a) Zhang, Q.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.;
Wang, F. Adv. Mater. 2004, 16, 432–436. (b) Jia, W. L.; McCormick, T.;
Tao, Y.; Lu, J.-P.; Wang, S. Inorg. Chem. 2005, 44, 5706–5712. (c) Zhang,
Q.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Adv. Funct.
Mater. 2006, 16, 1203–1208. (d) Amaroli, N.; Accorsi, G.; Holler, M.;
Moudam, O.; Nierengarten, J.-F.; Zhou, Z.; Wegh, R. T.; Welter, R. Adv.
Mater. 2006, 18, 1313–1316. (e) Su, Z.; Che, G.; Li, W.; Su, W.; Li, M.;
Chu, B.; Li, B.; Zhang, Z.; Hu, Z. Appl. Phys. Lett. 2006, 88, No. 213508.
(f) Che, G.; Su, Z.; Li, W.; Chu, B.; Li, M.; Hu, Z.; Zhang, Z. Appl. Phys.
Lett. 2006, 89, No. 103511. (g) Zhang, Q.; Ding, J.; Cheng, Y.; Wang, L.;
Xie, Z.; Jing, X.; Wang, F. Adv. Funct. Mater. 2007, 17, 2983–2990.
(h) Tsuboyama, A.; Kuge, K.; Furugori, M.; Okada, S.; Hoshino, M.;
Ueno, K. Inorg. Chem. 2007, 46, 1992–2001. (i) Moudam, O.; Kaeser, A.;
Delavaux-Nicot, B.; Duhayon, C.; Holler, M.; Accorsi, G.; Armaroli, N.;
Seguy, I.; Navarro, J.; Destruel, P.; Nierengarten, J.-F. Chem. Commun.
2007, 3077–3079. (j) Si, Z.; Li, J.; Li, B.; Liu, S.; Li, W. J. Lumin. 2009,
129, 181–186. (k) Zhang, L.; Li, B.; Su, Z. J. Phys. Chem. C 2009,
113, 13968–13973.
(3) (a) McMillin, D. R.; McNett, K. M. Chem. Rev. 1998,
98, 1201–1220. (b) Ford, P. C.; Cariati, E.; Bourassa, J. Chem. Rev.
1999, 99, 3625–3647. (c) Armaroli, N.; Accorsi, G.; Cardinali, F.;
Listorti, A. Top. Curr. Chem. 2007, 280, 69–115. (d) Felder, D.;
Nierengarten, J.-F.; Barigelletti, F.; Ventura, B.; Armaroli, N. J. Am.
Chem. Soc. 2001, 123, 6291–6299. (e) Cuttell, D. G.; Kuang, S. M.;
Fanwick, P. E.; McMillin, D. R.; Walton, R. A. J. Am. Chem. Soc. 2002,
124, 6–7. (f) Kuang, S. M.; Cuttell, D. G.; McMillin, D. R.; Fanwick,
10350
dx.doi.org/10.1021/ja202965y |J. Am. Chem. Soc. 2011, 133, 10348–10351