Journal of the American Chemical Society
Page 6 of 7
C. Efficient Docking-Migration Strategy for Selective Radical
Inhibitors Incorporating Novel Isothiazolidinone Heterocyclic
Phosphotyrosine Mimetics. J. Med. Chem. 2005, 48, 6544−6548. (c)
Csakai, A.; Smith, C.; Davis, E.; Martinko, A.; Coulup, S.; Yin, H. Saccharin
Derivatives as Inhibitors of Interferon-Mediated Inflammation. J. Med.
Chem. 2014, 57, 5348–5355.
Difluoromethylation of Alkenes. Angew. Chem., Int. Ed. 2018, 57,
17156–17160. (c) Liu, J.; Wu, S.; Yu, J.; Lu, C.; Wu, Z.; Wu, X.; Xue, X.-S.;
Zhu, C. Polarity Umpolung Strategy for the Radical Alkylation of
Alkenes. Angew. Chem., Int. Ed. 2020, 59, 8195−8202. (d) Whalley, D.
M.; Duong, H. A.; Greaney, M. F. Alkene Carboarylation through
Catalyst-Free, Visible Light-Mediated Smiles Rearrangement Chem. -
Eur. J. 2019, 25, 1927−1930.
1
2
3
4
5
6
7
8
11
CCDC1921518 (3a) contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
For selected recent examples on alkynes, see: (e) Gao, P.; Shen, Y.-W.;
Fang, R.; Hao, X.-H.; Qiu, Z.-H.; Yang, F.; Yan, X.-B.; Wang, Q.; Gong, X.-J.;
12
(a) Deng, H.-P.; Zhou, Q.; Wu, J. Microtubing-Reactor-Assisted
Aliphatic C−H Functionalization with HCl as
a Hydrogen-Atom-
Liu,
X.-Y.;
Liang,
Y.-M.
Copper-Catalyzed
One-Pot
Transfer Catalyst Precursor in Conjunction with an Organic
Photoredox Catalyst. Angew. Chem., Int. Ed. 2018, 57, 12661−2665. (b)
Mukherjee, S.; Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Glorius, F.
Alkynylation of Csp2(O)–H Bonds Enabled by Photoredox-Mediated
Hydrogen-Atom Transfer. Angew. Chem., Int. Ed. 2017, 56,
14723−14726. (c) Mukherjee, S.; Patra, T.; Glorius, F. Cooperative
Catalysis: A Strategy to Synthesize Trifluoromethyl-thioesters from
Aldehydes. ACS Catal. 2018, 8, 5842−5846. (d) Zhang, X.; MacMillan, D.
W. C. Direct Aldehyde C–H Arylation and Alkylation via the
Combination of Nickel, Hydrogen Atom Transfer, and Photoredox
Catalysis. J. Am. Chem. Soc. 2017, 139, 11353–11356.
Trifluoromethylation/Aryl Migration/Carbonyl Formation with
Homopropargylic Alcohols. Angew. Chem., Int. Ed. 2014, 53,
7629−7633. (f) Zheng, J.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q. Radical
Cascade Reaction of Alkynes with N-fluoroarylsulfonimides and
Alcohols. Nat. Commun. 2015, 6, 7011. (g) Pan, C.; Zhang, H.; Zhu, C.
Oxidative Difunctionalization of Alkynoates via Cascade Radical
Addition, Aryl Migration, and Decarboxylation. Tetrahedron Lett.
2016, 57, 595−598.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6
Selected recent examples starting from sulfone precursors: (a) Wang,
Z.-S.; Chen, Y.-B.; Zhang, H.-W.; Sun, Z.; Zhu, C.; Ye, L.-W. Ynamide Smiles
Rearrangement Triggered by Visible-Light-Mediated Regioselective
Ketyl-Ynamide Coupling: Rapid Access to Functionalized Indoles and
Isoquinolines. J. Am. Chem. Soc. 2020, 142, 3636−3644. (b) Zhu, Y.-L.;
Jiang, B.; Hao, W.-J.; Qiu, J.-K.; Sun, J.; Wang, D.-C.; Wei, P.; Wang, A.-F.;
Li, G.; Tu, S.-J. Catalytic Arylsulfonyl Radical Triggered 1,7-Enyne
Bicyclizations. Org. Lett. 2015, 17, 6078−6084. (c) Brachet, E.; Marzo,
L.; Selkti, M.; König, B.; Belmont, P. Visible Light Amination/Smiles
Cascade: Access to Phthalazine Derivatives. Chem. Sci. 2016, 7,
5002−5006. A recent example not involving sulfones: (d) Li, L.; Li, Z.-
L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu,
J.; Hou, C.; Tan, B.; Liu, X.-Y. Radical Aryl Migration Enables Diversity-
Oriented Synthesis of Structurally Diverse Medium/Macro- or Bridged-
Rings. Nat. Commun. 2016, 7, 13852.
13
Ravelli, D.; Fagnoni, M.; Fukuyama, T.; Nishikawa,T.; Ryu, I. Site-
Selective C–H Functionalization by Decatungstate Anion
Photocatalysis: Synergistic Control by Polar and Steric Effects Expands
the Reaction Scope. ACS Catal. 2018, 8, 701−713.
14
Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Metal-
Free C–H Bond Activation of Branched Aldehydes with A Hypervalent
Iodine(III) Catalyst under Visible-Light Photolysis: Successful Trapping
with Electron-Deficient Olefins. Angew. Chem., Int. Ed. 2014, 53,
11060−11064.
15
For the formation of ketone as an adduct of acyl radical and BHT,
see: Tan, H.; Li, H.; Ji, W.; Wang, L. Sunlight-Driven Decarboxylative
Alkynylation of α-Keto Acids with Bromoacetylenes by Hypervalent
Iodine Reagent Catalysis: A Facile Approach to Ynones. Angew. Chem.,
Int. Ed. 2015, 54, 8374−8377.
7
(a) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. Copper-Catalyzed
One-Pot Trifluoromethylation/Aryl Migration/Desulfonylation and
C(sp2)–N Bond Formation of Conjugated Tosyl Amides. J. Am. Chem. Soc.
2013, 135, 14480–14483. (b) Kong, W.; Casimiro, M.; Fuentes, N.;
Merino, E.; Nevado, C. Metal-Free Aryltrifluoromethylation of
Activated Alkenes. Angew. Chem., Int. Ed. 2013, 52, 13086–13090. (c)
Kong, W.; Merino, E.; Nevado, C. Arylphosphonylation and
Arylazidation of Activated Alkenes. Angew. Chem., Int. Ed. 2014, 53,
5078−5082. (d) Fuentes, N.; Kong, W. Q.; Fernandez-Sanchez, L.;
Merino, E.; Nevado, C. Cyclization Cascades via N-Amidyl Radicals
toward Highly Functionalized Heterocyclic Scaffolds. J. Am. Chem. Soc.
2015, 137, 964−973.
16
Morack, T.; Mück-Lichtenfeld, C.; Gilmour, R. Bioinspired Radical
Stetter Reaction: Radical Umpolung Enabled by Ion-Pair
Photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 1208−1212.
17
Selected examples for vinyl radical-triggered 1,5-HAT, see: (a) Hu,
M.; Fan, J.-H.; Liu, Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Metal-Free
Radical [2+2+1] Carbocyclization of Benzene-Linked 1,n-Enynes: Dual
C(sp3)–H Functionalization Adjacent to a Heteroatom. Angew. Chem.,
Int. Ed. 2015, 54, 9577–9580; (b) Gloor, C. S.; Dénès, F.; Renaud, P.
Hydrosulfonylation Reaction with Arenesulfonyl Chlorides and
Tetrahydrofuran:
Conversion
of
Terminal
Alkynes
into
Cyclopentylmethyl Sulfones. Angew. Chem. Int. Ed. 2017, 56, 13329–
13332. (c) Regioselective Vinylation of Remote Unactivated C(sp3 )–H
Bonds: Access to Complex Fluoroalkylated Alkenes. Wu, S., Wu,
X., Wang, D., Zhu, C. Angew. Chem. Int. Ed. 2019, 58, 1499–1503. (d)
Yang, S.; Wu, X.; Wu, S.; Zhu, C. Regioselective Sulfonylvinylation of the
8
Chen, M.; Yang, C.; Wang, Y.; Li, D; Xia, W. UV Light Induced Direct
Synthesis of Phenanthrene Derivatives from
a Linear 3-Aryl-N-
(arylsulfonyl) Propiolamides. Org. Lett. 2016, 18, 2280−2283.
9
(a) Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan, J. D.;
Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. EosinꢀY as a Direct Hydrogen-
Atom Transfer Photocatalyst for the Functionalization of C–H Bonds.
Angew. Chem., Int. Ed. 2018, 57, 8514–8518. (b) Fan, X.-Z.; Xiao, P.; Jiao,
Z.; Yang, T.; Dai, X.; Xu, W.; Tan, J. D.; Cui, G.; Su, H.; Fang, W.; Wu, J.
Unactivated C(sp3)–H Bond via
a C-Centered Radical-Mediated
Hydrogen Atom Transfer (HAT) Process. Org. Lett. 2019, 21, 4837–
4841.
18
Combs, A. P.; Zhu, W.; Crawley, M. L.; Glass, B.; Polam, P.; Sparks, R.
Neutral-Eosin-Y-Photocatalyzed
Silane
Chlorination
Using
B.; Modi, D.; Takvorian, A.; McLaughlin, E.; Yue, E. W.; Wasserman, Z.;
Bower, M.; Wei, M.; Rupar, M.; Ala, P. J.; Reid, B. M.; Ellis, D.; Gonneville,
L.; Emm, T.; Taylor, N.; Yeleswaram, S.; Li, Y.; Wynn, R.; Burn, T. C.;
Hollis, G.; Liu, P. C. C.; Metcalf, B. Potent Benzimidazole Sulfonamide
Protein Tyrosine Phosphatase 1B Inhibitors Containing the
Heterocyclic (S)-Isothiazolidinone Phosphotyrosine Mimetic. J. Med.
Chem. 2006, 49, 3774–3789.
Dichloromethane. Angew. Chem., Int. Ed. 2019, 58, 12580–12584. (c)
Kuang, Y.; Wang, K.; Shi, X.; Huang, X.; Meggers, E.; Wu, J. Asymmetric
Synthesis of 1,4-Dicarbonyl Compounds from Aldehydes by Hydrogen
Atom Transfer Photocatalysis and Chiral Lewis Acid Catalysis. Angew.
Chem. Int. Ed. 2019, 58, 16859–16863.
10 (a) Abou-Gharbia, M.; Moyer, J. A.; Patel, U.; Webb, M.; Schiehser, G.;
Andree, T.; Haskins, J. T. Synthesis and Structure-Activity Relationship
of Substituted Tetrahydro- and Hexahydro-1,2-benzisothiazol-3-one
1,1-dioxides and Thiadiazinones: Potential Anxiolytic Agents. J. Med.
Chem. 1989, 32, 1024−1033 (b) Combs, A. P.; Yue, E. W.; Bower, M.; Ala,
P. J.; Wayland, B.; Douty, B.; Takvorian, A.; Polam, P.; Wasserman, Z.;
Zhu, W.; Crawley, M. L.; Pruitt, J.; Sparks, R.; Glass, B.; Modi, D.;
McLaughlin, E.; Bostrom, L.; Li, M.; Galya, L.; Blom, K.; Hillman, M.;
Gonneville, L.; Reid, B. G.; Wei, M.; Becker-Pasha, M.; Klabe, R.; Huber,
R.; Li, Y.; Hollis, G.; Burn, T. C.; Wynn, R.; Liu, P.; Metcalf, B. Structure-
Based Design and Discovery of Protein Tyrosine Phosphatase
19
Maccari, R.; Ottanà, R. Low Molecular Weight Phosphotyrosine
Protein Phosphatases as Emerging Targets for the Design of Novel
Therapeutic Agents. J. Med. Chem. 2012, 55, 2–22.
6
ACS Paragon Plus Environment