Journal of the American Chemical Society
COMMUNICATION
Scheme 3. Reaction Intermediate Synthesis
Research Program for supporting this research. We thank Dr.
James Korp for collecting and solving the X-ray structures.
’ REFERENCES
(1) (a) Jeschke, P. ChemBioChem 2004, 5, 570. (b) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008,
37, 320. (c) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(2) (a) Dmowski, W.; Wielgat, J. J. Fluorine Chem. 1987, 37, 429.
(b) Bloodworth, A. J.; Bowyer, K. J.; Mitchell, J. C. Tetrahedron Lett.
1987, 28, 5347. (c) Hudlicky, M. Org. React. 1988, 35, 513.
(3) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.;
Buchwald, S. L. Science 2010, 328, 1679.
Scheme 4. NMR Experiments
(4) (a) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010,
132, 3648. (b) Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc.
2010, 132, 2878.
(5) (a) Burton, D. J.; Lu, L. Top. Curr. Chem. 1997, 193, 45.
(b) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc.
2008, 130, 8600. (c) Urata, H.; Fuchikami, T. Tetrahedron Lett. 1991,
32, 91. (d) Follꢀeas, B.; Marek, I.; Normant, J.-F.; Saint-Jalmes, L.
Tetrahedron 2000, 56, 275. Pd:(e) Grushin, V. V.; Marshall, W. J. J.
Am. Chem. Soc. 2006, 128, 4632. (f) Dubinina, G. G.; Ogikubo, J.; Vicic,
D. A. Organometallics 2008, 27, 6233.
(6) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909.
(7) (a) Xiao, J.-C.; Ye, C.; Shreeve, J. M. Org. Lett. 2005, 7, 1963.
(b) Mcloughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 5921.
(c) Croxtall, B.; Fawcett, J.; Hope, E. G.; Stuart, A. M. J. Chem. Soc.,
Dalton Trans. 2002, 491.
(8) Review: Furin, G. G. Russ. Chem. Rev. 2000, 69, 491.
(9) (a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128.
(b) Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008,
130, 15185.
(10) (a) Cairncross, A.; Sheppard, W. A. J. Am. Chem. Soc. 1968,
90, 2186. (b) Coe, P. L.; Stephens, R.; Tatlow, J. C. J. Chem. Soc.
1962, 3227. However, C6F5Li can be hazardous:(c) Kinsella, E.;
Massey, A. G. Chem. Ind. (London) 1971, 36, 1017B.
Scheme 5. Reaction Mechanism
(11) Burton, D. J.; Yang, Z.-Y. Tetrahedron 1992, 48, 189.
(12) (a) Naumann, D.; Tyrra, W. J. Organomet. Chem. 1987,
334, 323. (b) Nair, H. K.; Morrison, J. A. Inorg. Chem. 1989, 28, 2816.
(13) (a) Andreades, S. J. Am. Chem. Soc. 1964, 86, 2003.
(b) Chabinyc, M. L.; Brauman, J. I. J. Am. Chem. Soc. 1998, 120, 10863.
(14) Vehkam€aki, M.; Hatanp€a€a, T.; Ritala, M.; Leskel€a, M. J. Mater.
Chem. 2004, 14, 3191.
(15) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742.
(16) (a) Rees, W. S., Jr.; Just, O.; Schumann, H.; Weimann, R. Poly-
hedron 1998, 17, 1001. (b) Hlavinka, M. L.; Hagadorn, J. R. Organome-
tallics 2007, 26, 4105.
copper halide produces a mixture of anionic Cu species that re-
acts with aryl iodide, either directly or via a neutral perfluoroalkyl
compound,5f to give the coupling product.
In conclusion, we have developed a general method for arylation
of readily available 1H-perfluoroalkanes. The method employs aryl
iodide and 1H-perfluoroalkane reagents, a DMPU solvent, a
TMP2Zn base, and a copper chloride/phenanthroline catalyst.
(17) Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832.
(18) Nair, H. K.; Burton, D. J. J. Fluorine Chem. 1992, 56, 341.
(19) (a) Naumann, D.; Schorn, C.; Tyrra, W. Z. Anorg. Allg. Chem.
1999, 625, 827. (b) Lange, H.; Naumann, D. J. Fluorine Chem. 1984,
26, 435. (c) Naumann, D.; Roy, T.; Caeners, B.; H€utten, D.; Tebbe,
K.-F.; Gilles, T. Z. Anorg. Allg. Chem. 2000, 626, 999.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, char-
b
acterization data for new compounds, and X-ray crystallography
data for 1 and 2. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank the Welch Foundation (Grant No. E-1571), Na-
tional Institute of General Medical Sciences (Grant No.
R01GM077635), A. P. Sloan Foundation, Camille and Henry
Dreyfus Foundation, and Norman Hackerman Advanced
9289
dx.doi.org/10.1021/ja2041942 |J. Am. Chem. Soc. 2011, 133, 9286–9289