3010
L. You et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3007–3011
Table 2
effectiveness of inhibition after 37 h (bottom panel). Although
these are qualitative experiments, they demonstrate the antiviral
potential of those quinoxaline derivatives.
Activities of amide derivatives of compound 28
O
In conclusion, we have explored preliminary structure–activity
relationships (SARs) for a library of quinoxaline derivatives target-
ing the NS1A protein for the development of anti-influenza thera-
peutics. Those quinoxaline derivatives were designed to mimic
(ꢀ)-epigallocatechin-3-gallate, a hit identified by high-throughput
screening. In vitro fluorescence polarization experiments showed
that these compounds can bind to NS1A to disrupt the NS1A–
dsRNA interaction. Substitution at positions 2 and 3 on the quinox-
aline core played an important role, with 2-furyl being the best
among those investigated. Substitution at position 6 was also cru-
cial. Compounds 35 and 44 were the most potent, with an IC50 of
N
O
N
R
H
N
O
Compound
R
% Binding at
50
% Intercalation at
50
lM
lM
34
35
36
37
38
2-OMe-Ph–
3-OMe-Ph–
4-OMe-Ph–
3,4-(OMe)2-Ph–
3,4,5-(OMe)3-
Ph–
29.5
74.0
44.0
39.5
53.6
ꢀ17.7
4.5
7.6
5.6
ꢀ4.7
6.2 and 3.5 lM, respectively. The dsRNA intercalation experiments
indicated that both 35 and 44 do not inhibit NS1A–dsRNA interac-
tions by interfering with dsRNA, but likely function by binding to
the NS1A dsRNA-binding domain itself. Results from a cell assay
demonstrated that compound 44 was able to inhibit influenza A
virus growth. Detailed structural analysis and optimization are
currently ongoing.
39
40
41
42
43
44
45
46
2-F-Ph–
3-F-Ph–
4-F-Ph–
11.6
13.6
49.0
47.9
64.7
79.5
8.2
ꢀ11.3
ꢀ11.6
6.3
4-COOMe-Ph–
2-Pyridyl-
2-Furyl-
8.8
ꢀ9.6
5.9
2-Thenyl-
COOMe
ꢀ10.5
ꢀ27.9
26.7
Acknowledgments
We thank the National Institutes of Health (U01 AI074497) and
The Texas Institute for Drug and Diagnostic Development for sup-
port of this work.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Lagoja, I. M.; De Clercq, E. Med. Res. Rev. 2008, 28, 1.
2. Taubenberger, J. K.; Morens, D. M. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 499.
3. Bautista, E.; Chotpitayasunondh, T.; Gao, Z.; Harper, S. A.; Shaw, M.; Uyeki, T.
M.; Zaki, S. R.; Hayden, F. G.; Hui, D. S.; Kettner, J. D.; Kumar, A.; Lim, M.;
Shindo, N.; Penn, C.; Nicholson, K. G. N. Eng. J. Med. 2010, 362, 1708.
4. Abdel-Ghafar, A.-N.; Chotpitayasunondh, T.; Gao, Z.; Hayden, F. G.; Hien, N. D.;
de Jong, M.; Naghdaliyev, A.; Peiris, J. S. M.; Shindo, N.; Soeroso, S.; Uyeki, T. M.
N. Eng. J. Med. 2008, 358, 261.
5. De Clercq, E. Nat. Rev. Drug Disc. 2006, 5, 1015.
6. Das, K.; Aramini, J. M.; Ma, L.-C.; Krug, R. M.; Arnold, E. Nat. Struct. Mol. Biol.
2010, 17, 530.
7. (a) Chien, C.; Tejero, R.; Huang, Y.; Zimmerman, D. E.; Rios, C. B.; Krug, R. M.;
Montelione, G. T. Nat. Struct. Biol. 1997, 4, 891; (b) Liu, J.; Lynch, P. A.; Chien, C.;
Montelione, G. T.; Krug, R. M.; Berman, H. M. Nat. Struct. Biol. 1997, 4, 896; (c)
Min, J.-Y.; Krug, R. M. Proc. Natl. Acad. Sci. 2006, 103, 7100; (d) Hale, B. G.;
Randall, R. E.; Ortin, J.; Jackson, D. J. Gen. Virol. 2008, 89, 2359; (e) Yin, C.; Khan,
J. A.; Swapna, G. V. T.; Ertekin, A.; Krug, R. M.; Tong, L.; Montelione, G. T. J. Biol.
Chem. 2007, 282, 20584.
8. (a) Fernandez-Sesma, A. Infect Disord. Drug Targets 2007, 7, 336; (b) Krug, R. M.;
Aramini, J. M. Trends Pharmacol. Sci. 2009, 30, 269; (c) Basu, D.; Walkiewicz, M.
P.; Frieman, M.; Baric, R. S.; Auble, D. T.; Engel, D. A. J. Virol. 2009, 83, 1881; (d)
Walkiewicz, M. P.; Basu, D.; Jablonski, J. J.; Geysen, H. M.; Engel, D. A. J. Gen.
Virol. 2011, 92, 60.
9. (a) Yamamoto, T.; Juneja, L. R.; Chu, D.-C.; Kim, M. Chemistry and Applications of
Green Tea; CRC: Boca Raton, 1997; (b) Li, L.; Chan, T. H. Org. Lett. 2001, 3, 739.
10. (a) Wan, S. B.; Dou, Q. P.; Chan, T. H. Tetrahedron 2006, 62, 5897; (b) Tanaka, H.;
Miyoshi, H.; Chuang, Y.-C.; Ando, Y.; Takahashi, T. Angew. Chem., Int. Ed. 2007,
46, 5934.
11. (a) Park, K. D.; Lee, S. G.; Kim, S. U.; Kim, S. H.; Sun, W. S.; Cho, S. J.; Jeong, D. H.
Bioorg. Med. Chem. Lett. 2004, 14, 5189; (b) Anderson, J. C.; Headley, C.;
Stapleton, P. D.; Taylor, P. W. Bioorg. Med. Chem. Lett. 2005, 15, 2633; (c) Hayes,
C. J.; Whittaker, B. P.; Watson, S. A.; Grabowska, A. M. J. Org. Chem. 2006, 71,
9701; (d) Sánchez-del-Campo, L.; Otón, F.; Tárraga, A.; Cabezas-Herrera, J.;
Chazarra, S.; Rodríguez-López, J. N. J. Med. Chem. 2008, 51, 2018.
12. For several recent examples, see: (a) Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P.
M.; Franck, X.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. Lett. 2006, 16,
815; (b) Rong, F.; Chow, S.; Yan, S.; Larson, G.; Hong, Z.; Wu, J. Bioorg. Med.
Chem. Lett. 2007, 17, 1663; (c) Zhang, L.; Qiu, B.; Xiong, B.; Li, X.; Li, J.; Wang, X.;
Li, J.; Shen, J. Bioorg. Med. Chem. Lett. 2007, 17, 2118; (d) Porter, J.; Lumb, S.;
Lecomte, F.; Reuberson, J.; Foley, A.; Calmiano, M.; Riche, K.; Edwards, H.;
Figure 1. Single cycle virus growth curve (top panel) and multiple cycles virus
growth curve (bottom panel) after compound 44 was incubated.
cycles growth curve at MOI 0.001 (bottom panel). Following 1 h
infection, growth media containing compound 44 diluted in DMSO
or control (0.1% DMSO) was added. Compound 44 inhibited influ-
enza A/Udorn/72 virus growth ꢁ10-fold (top panel). The multiple
cycles growth assay indicates that compound 44 appeared to lose