ORGANIC
LETTERS
2011
Vol. 13, No. 13
3352–3355
Spirodiepoxide-Based Cascades: Direct
Access to Diverse Motifs
Rojita Sharma,† Madhuri Manpadi,† Yue Zhang,† Hiyun Kim,† Novruz G. Ahkmedov,‡
and Lawrence J. Williams*,†
Department of Chemistry and Chemical Biology, Rutgers, The State University of New
Jersey, Piscataway, New Jersey 08854, United States, and C. Eugene Bennett
Department of Chemistry, 406 Clark Hall, Prospect Street, West Virginia University,
Morgantown, West Virginia 26506, United States
Received April 26, 2011
ABSTRACT
Allene epoxide formation/opening reaction sequences enabled direct access to diverse products. Described here are a single flask procedure for
allene preparation and allene oxidation/derivatization reactions that give, among others, diendiol, diyndiol, R0-hydroxy-γ-enone, dihydrofuranone,
butenolide, and δ-lactone products.
Here we report a simplified procedure for allene
synthesis and several unprecedented spirodiepoxide-
based transformations with heteronucleophiles and car-
bon nucleophiles as well as ambiphilic reagents. Our aim
is to develop a framework for spirodiepoxide reactivity,
to demonstrate the strategic advantages that allene
oxidation offers in complex molecule synthesis, and to
identify reactions that give access to diverse structural
motifs.1 This disclosure is focused on simple proce-
dures, novel cascade sequences, and diversity oriented
transformations.
There are many methods for allene synthesis.2 Cuprate
addition to activated propargyl alcohol derivatives is mild
and probably the most general, convergent, and reliable
method available.3 A three-step sequence is usually em-
ployed: (1) a propargyl alcohol is assembled, (2) the
hydroxyl of the substrate is converted to a suitable leaving
group, and (3) copper mediated SN20 substitution is then
€
(3) (a) Hoffmann-Roder, A.; Krause, N. Metal-Mediated Synthesis
of Allenes. In Modern Allene Chemistry; Krause, N., Hashmi, A. S. K.,
Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004; Vol. 1, pp
52ꢀ70 and references therein. (b) Ogasawara, M.; Hayashi, T. Transi-
tion Metal-Catalyzed Synthesis of Allenes. In Modern Allene Chemistry;
Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, 2004; Vol. 1, pp 107ꢀ110 and references therein. (c) Ohno, H.;
Nagaoka, Y.; Tomioka, K. Enantioselective Synthesis of Allenes. In
Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH
Verlag GmbH & Co. KGaA: Weinheim, 2004; Vol. 1, pp 141ꢀ151 and
references therein.
† Rutgers, The State University of New Jersey.
‡ West Virginia University.
(1) (a) Joyasawal, S.; Lotesta, S. D.; Akhmedov, N. G.; Williams,
L. J. Org. Lett. 2010, 12, 988. (b) Zhang, Y.; Cusick, J. R.; Shangguan,
N.; Katukojvala, S.; Inghrim, J.; Emge, T. J.; Williams, L. J. J. Org.
Chem. 2009, 74, 7707. (c) Ghosh, P.; Zhang, Y.; Emge, T. J.; Williams,
L. J. Org. Lett. 2009, 11, 4402. (d) Ghosh, P.; Cusick, J. R.; Inghrim, J.;
Williams, L. J. Org. Lett. 2009, 11, 4672. (e) Wang, Z. H.; Shangguan,
N.; Cusick, J. R.; Williams, L. J. Synlett 2008, 2, 213. (f) Kolakowski,
R. V.; Williams, L. J. Tetrahedron Lett. 2007, 48, 4761. (g) Ghosh, P.;
Lotesta, S. D.; Williams, L. J. J. Am. Chem. Soc. 2007, 129, 2438. (h)
Shangguan, N.; Kiren, S.; Williams, L. J. Org. Lett. 2007, 9, 1093. (i)
Lotesta, S. D.; Kiren, S. K.; Sauers, R. R.; Williams, L. J. Angew. Chem.,
Int. Ed. 2007, 46, 15. (j) Katukojvala, S.; Barlett, K. N.; Lotesta, S. D.;
Williams, L. J. J. Am. Chem. Soc. 2004, 126, 15348. (k) D.; Hou, Y.;
Williams, L. J. Org. Lett. 2007, 9, 869.
ꢀ
(4) (a) Rona, P.; Crabbe, P. J. Am. Chem. Soc. 1968, 90, 4733. (b)
ꢀ
Rona, P.; Crabbe, P. J. Am. Chem. Soc. 1969, 91, 3289. (c) Tadema, G.;
Vermeer, P.; Meijer, J.; Brandsma, L. Recl. Trav. Chim. Pays-Bas 1976,
ꢀ
95, 66. (d) Alexakis, A.; Commerc-on, A.; Villieras, J.; Normant, J. F.
Tetrahedron Lett. 1976, 17, 2313. (e) Moreau, J.-L.; Gaudemar, M. J.
Organomet. Chem. 1976, 108, 159. (f) Marek, I.; Mangeney, P.; Alexakis,
A.; Normant, J. F. Tetrahedron Lett. 1986, 27, 5499. (g) Alexakis, A.;
Marek, I.; Mangeney, P.; Normant, J. F. J. Am. Chem. Soc. 1990, 112,
8042. (h) Daeuble, J. F.; McGettigan, C.; Stryker, J. M. Tetrahedron
€
Lett. 1990, 31, 2397. (i) Ansorge, K.; Polborn, K.; Muller, T. J. J.
Organomet. Chem. 2001, 630, 198. (j) Nantz, M. H.; bender, D. M.;
Janaki, S. Synthesis 1993, 6, 577. (k) Elsevier, C. J.; Vermeer, P. J. Org.
Chem. 1989, 54, 3726. (l) Gooding, O. W.; Beard, C. C.; Jackson, D. Y.;
Wren, D. L.; Cooper, G. F. J. Org. Chem. 1991, 56, 1083.
(2) (a) Krause, N., Hashmi, A. S. K., Eds. Modern Allene Chemistry,
Vol. 1; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany,
2004. (b) Brummond, K. M.; DeForrest, J. E. Synthesis 2007, 6, 795.
r
10.1021/ol201101e
Published on Web 06/07/2011
2011 American Chemical Society