Selenation/Thionation of α-Amino Acids
T. A. Perry, D. K. Lahiri, A. Brossi, N. H. Greig, J. Med.
Chem. 2003, 46, 5222–5229.
white solid (0.15 g) in 45% yield. IR (KBr, selected data): ν = 1666
˜
(s), 1488 (s), 1451 (m), 1321 (m), 1260 (m), 1144 (m), 1087 (m), 812
(s), 522 (m), 418 (m) cm–1. 1H NMR ([D6]DMSO): δ = 7.51 [d,
J(H,H) = 8.8 Hz, 4 H, Ar-H], 7.46 [d, J(H,H) = 8.8 Hz, 4 H, Ar-
H], 4.52 (s, 4 H, CH2) ppm. 13C NMR ([D6]DMSO): δ = 164.6
(C=O), 139.4 (Ar-C), 131.4 (Ar-C), 129.4 (Ar-C), 127.5 (Ar-C),
53.0 (CH2) ppm. Mass spectrum (CI+, m/z), 335 [M + H]+, 337 [M
+ H]+. C16H12Cl2N2O2 (335.18): calcd. C 57.33, H 3.61, N 8.36;
found C 57.25, H 3.76, N 8.47.
[10] a) D. S. Dood, R. L. Martinez, Tetrahedron Lett. 2004, 45,
4265–4267; b) X. Wu, A. K. Mahalingam, M. Alterman, Tetra-
hedron Lett. 2005, 46, 1501–1504; c) A. Moulin, J. Martinez,
J. A. Fehrentz, Tetrahedron Lett. 2006, 47, 7591–7594.
[11] G. Hua, J. D. Woollins, Angew. Chem. 2009, 121, 1394; Angew.
Chem. Int. Ed. 2009, 48, 1368–1377.
[12] I. P. Gray, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins,
Chem. Eur. J. 2005, 11, 6221–6227.
[13] T. Okawara, Y. Noguchi, T. Matsuda, M. Furukawa, Chem.
Lett. 1981, 185–188.
[14] C. Y. Liao, K. T. Chan, J. Y. Zeng, C. H. Hu, C. Y. Tu, H. M.
Lee, Organometallics 2007, 26, 1692–1702.
[15] K. S. Lee, K. K. Adhikary, H. W. Lee, B. S. Lee, I. Lee, Org.
Biomol. Chem. 2003, 1, 1989–1994.
[16] Y. Li, G. Hua, A. M. Z. Slawin, J. D. Woollins, Molecules 2009,
14, 884–892.
Computational Details: Geometries were fully optimised in the gas
phase at the B3LYP level[31] using Curtis and Binning’s 962(d) basis
on Se,[32] standard 6-311+G(d) basis on the C4N2H4 core, and 6-
31G(d) on the Ph rings. The nature of the stationary points was
verified by calculation of the harmonic frequencies, which were also
used to calculate zero-point corrections. Dispersion energies were
evaluated through the empirical Scheme proposed by Grimme et
al. (denoted B3LYP-D3),[33] employing the B3LYP optimised geo-
metries. Energies are reported at the B3LYP-D3+ZPE(B3LYP)
level, except for the constrained dimers, where no zero-point ener-
gies have been computed (energies are reported at the B3LYP-D3
level). The computations were performed using the Gaussian 03
suite of programs.[34]
[17] K. Kobayashi, H. Tukada, K. Kikuchi, I. Ikemoto, Bull. Chem.
Soc. Jpn. 1986, 59, 1741–1746.
[18] E. R. Cullen, F. S. Guziec Jr., C. J. Murphy, T. C. Wong, K. K.
Andersen, J. Am. Chem. Soc. 1981, 103, 7055–7057.
[19] E. R. Cullen, F. S. Guziec Jr., C. J. Murphy, T. C. Wong, K. K.
Andersen, J. Chem. Soc. Perkin Trans. 2 1982, 473–476.
[20] G. Hua, Y. Li, A. M. Z. Slawin, J. D. Woollins, Org. Lett. 2006,
8, 5251–5254.
Supporting Information (see footnote on the first page of this arti-
cle): For additional tabular and graphical material on parent and
phenyl diketopiperazine derivatives.
[21] a) F. L. Bettens, R. P. A. Bettens, R. D. Brown, P. D. Godfrey,
J. Am. Chem. Soc. 2000, 122, 5856–5860; b) Y. X. Wen, S. S.
Zhang, B. H. Yu, X. M. Li, Q. Liu, Asian J. Chem. 2006, 18,
1032–1038.
[22] A. N. Montenegro, R. Carballo, E. M. Vázquez-López, Polyhe-
dron 2009, 28, 3915–3922.
[23] Y. H. Wen, S. S. Zhang, B. H. Yu, X. M. Li, Acta Crystallogr.,
Sect. E 2004, 60, o1494.
[24] Y. H. Wen, S. S. Zhang, B. H. Yu, Q. Liu, X. M. Li, Asian J.
Chem. 2006, 18, 201–206.
[25] S. S. Zhang, Y. H. Wen, X. F. Tang, X. M. Li, Chin. J. Chem.
2007, 25, 714–717.
Acknowledgments
The authors are grateful to the University of St Andrews and the
Engineering and Physical Science Research Council (EPSRC) for
financial support. Michael Bühl wishes to thank EaStCHEM for
support and for access to the EaStCHEM Research Computing
Facility maintained by Dr. H. Früchtl.
[26] A. L. Fuller, L. A. S. Scott-Hayward, Y. Li, M. Bühl, A. M. Z.
Slawin, J. D. Woollins, J. Am. Chem. Soc. 2010, 132, 5799–
5802.
[1] M. T. Edgar, G. R. Pettit, T. S. Krupa, J. Org. Chem. 1979, 44,
396–400.
[27] Rigaku, Crystal Structure, version 3.8, Single Crystal Structure
Analysis Software. Rigaku/MSC, 9009 TX, USA 77381-5209;
Rigaku, Tokyo 196-8666, Japan, 2006.
[28] Rigaku, CrystalClear, version 1.36, Rigaku Corporation, 3-9-
12 Akishima, Tokyo, Japan, 2004.
[2] P. M. Fischer, J. Pept. Sci. 2003, 9, 9–35; M. C. Khosla, R. R.
Smeby, F. Bumpus, J. Am. Chem. Soc. 1972, 94, 4721–4724.
[3] a) C. B. Cui, H. Kakeya, H. Osada, Tetrahedron 1996, 52,
12651–12666; b) S. Edmondson, S. J. Danishefsky, L. Sepp-Lo-
renzino, J. Am. Chem. Soc. 1999, 121, 2147–2155.
[4] A. Sanatamaria, N. Cabezas, C. Avendano, Tetrahedron 1999,
55, 1173–1186.
[29] G. M. Sheldrick, SHELXTL, version 6.11, Bruker AXS, Madi-
son, 2004.
[30] SHELXL97: G. M. Sheldrick, Acta Crystallogr., Sect. A 2008,
64, 112–122.
[5] M. Chu, M. Ronald, T. Imbi, Tetrahedron Lett. 1993, 34, 7537–
[31] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5642; b) C. Lee,
W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
[32] R. C. Binning, L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206–
1216.
7540.
[6] A. N. Acharya, J. M. Ostresh, R. A. Houghten, J. Comb. Chem.
2001, 3, 612–623.
[7] V. Krchnak, A. S. Weichsel, D. Cabel, Z. Flegelova, M. Lebl,
Mol. Diversity 1996, 1, 149–164.
[8] S. Scheibye, R. Shabana, S. O. Lawesson, C. Romming, Tetra-
hedron 1982, 38, 993–1001.
[9] V. L. D. Guarda, M. Perrissin, F. Thomasson, E. A. Ximenes,
S. L. Galdino, I. R. Pitta, C. Luu-Duc, Heterocycl. Commun.
2000, 6, 49–54; X. Zhu, T. Giordano, Q. Yu, H. W. Holloway,
[33] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys.
2010, 132, 154104.
[34] M. J. Frisch, J. A. Pople, Gaussian 03, revision E.01, Gaussian,
Inc., Wallingford CT, 2004 (see Supporting Information for the
full citation).
Received: February 20, 2011
Published Online: April 14, 2011
Eur. J. Org. Chem. 2011, 3067–3073
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3073